四边形蝴蝶定理

王朝百科·作者佚名  2010-03-10  
宽屏版  字体: |||超大  

四边形蝴蝶定理

若四边形一条对角线平分另一对角线,则过其交点的两条直线,以四边交点(邻边)的连线,与被平分的对角线的两个交点到对角线焦点距离相等。

证明过程中用到共边比例定理、共角比例定理。

如图:BG=CG,求证:EG=FG

连接CP,BS,BR,CQ

EG/BE*CF/FG=S△PGQ/S△PBQ* S△SCR/S△SGR=S△ABD/S△PBQ * S△SCR/S△ACD * S△PGQ/S△SGR

=AB*BD/BP*BQ * SC*CR/AC*DC * PG*QG/RG*SG

=AB*BD/BP*BQ * SC*CR/AC*DC * PG/RG*QG/SG

=S△ABC*S△BCD/S△BCP*BCQ * S△BCS*S△BCR/S△ABC*S△BCD * S△BCP/S△BCR*S△BCQ/S△BCS

=1

EG*CF=FG*BE

∵EG+BE=CF+FG

∴EG=GF

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有