角古猜想

王朝百科·作者佚名  2010-03-22  
宽屏版  字体: |||超大  

任给一个正整数n,如果n为偶数,就将它变为n/2,如果除后变为奇数,则将它乘3加1(即3n+1)。不断重复这样的运算,经过有限步后,一定可以得到1吗?

这角古猜想(1930)。人们通过大量的验算,从来没有发现反例,但没有人能证明。

试着任意选一个整数N,规则如下:[如果N为奇数,那么运算N*3+1; 如果N为偶数,那么运算N/2]

当得到第一个结果之后,在重复按规则运算(如果N为奇数,那么运算N*3+1 如果N为偶数,那么运算N/2)

这样一直算下去 你会发现最后数字会在一个循环圈里循环,这个循环圈是(4→2→1→4)

不信你可以去试试,建议刚开始选小点的数(100以内),因为这个算算需要耐心。

角谷静夫是日本的一位著名学者.他提出了两条极简单的规则,可以对任何一个自然数进行变换,最终使它陷入“4-2-1”的死循环.

角谷提出的变换法则是:

1.当N是奇数时,下一步变为3N+1;

2.当N是偶数时,下一步变为 N/2.

人们把它称为“角谷猜想”.

任举几个例子试试看:

当N是一位数6时,按规则应变为:

6→6÷2→3→3×3+1→10→10÷2→5→5×3+1→16→16÷2→8→8÷2→4→4÷2→2→2÷2→1→1×3+1→4→4÷2→2→2÷2→1→……

最后落入“4-2-1”的死循环.

当N为两位数,如46,应变换为:

46→46÷2→23→23×3+1→70→70÷2→35→35×3+1→106→106÷2→53→53×3+1→160→160÷2→80→8O÷2→40→40÷2→20→20÷2→10→10÷2→5→5×3+1→16→16÷2→8→8÷2→4→4÷2→2→2÷2→1→……

又落入了“4-2-1”的死循环.

不必列举更多的例子,迄今为止,人们还没有遇到例外情况,试验过的数,最终都停留在一个永无休止的循环圈:

但是,自然数浩如烟海,对角谷猜想,目前谁也不能证明,更不能否定.

深度扩展

任给一个正整数n,如果n能被a整除,就将它变为n/a,如果除后不能再整除,则将它乘b加c(即bn+c)。不断重复这样的运算,经过有限步后,一定可以得到d吗? 对此题的答案只能有3种 :1不一定 2一定不 3一定都

以下都是一定都的情况

一 a=b=c=d=m

二 a=m b=1 c=-1 d=0

三 a=m b=c=d=1

四 a=2 b=2^m-1 c=-1 d=1

以上(m>1)

五 a=2 b=2^m-1 c=1 d=1

六 a=2 b=c=d=2^m-1

以上m为任意自然数

最简单的情况:

a=b=c=d=2

a=2 b=1 c=1 d=1

a=2 b=1 c=-1 d=0

原题只是五的当m=2情况 据说中国有许多人会证明了原题 原题只是扩展的一个及其微小的部分

以上数据全部成立 没有一个反例 这道题非常短小 却隐含着非常丰富的数学思想的...需要用到的东西非常多 那些定理 公式都非常完美 可以表达非常普遍的数学规律 这是一个数学问题而不是什么猜想 绝对成立的 此题重在培养学生的独立思考问题的能力 以及逆向思维...

其实这道题非常简单

不知道是不是整体证法了

对以上情况的整体证法第一步:

先构造一个2元函数 这个函数揭示了一个秘密 :把能够被a整除的全部的自然数都转化成不能被a的自然数 f(x,y) 有a

五 a=2 b=2^m-1 c=1 d=1

用数学归纳 整除规律 因式分解 自然数拆分...证明:

(2^(mn)-1)/(2^n-1)=e

当m和n为自然数时,e为奇数

m=1 A1=(1)

m=2 A2=(1,5)

m=3 A3=(1,9,11)

m=4 A4=(1,17,19,23)

m=5 A5=(1,33,35,37,39)

m=6 A6=(1,65,67,71,73,79)

...

...

...

的组合无限数列A()的通项公式 各小项都不能被2的m次方-1整除

这个组合数列是非常简单的 只是无数个等差数列的首项....

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有