扩展欧几里德算法

王朝百科·作者佚名  2010-03-29  
宽屏版  字体: |||超大  

欧几里德算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

gcd函数就是用来求(a,b)的最大公约数的。

gcd函数的基本性质:

gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)

欧几里得算法的公式表述:

gcd(a,b)=gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b

假设d是a,b的一个公约数,则有

d|a, d|b,而r = a - kb,因此d|r

因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则

d | b , d |r ,但是a = kb +r

因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证

欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:

int Gcd(int a, int b)

{

if(b == 0)

return a;

return Gcd(b, a % b);

}

当然你也可以写成迭代形式:

int Gcd(int a, int b)

{

while(b != 0)

{

int r = b;

b = a % b;

a = r;

}

return a;

}

本质上都是用的上面那个原理。

补充: 扩展欧几里德算法是用来在已知a, b求解一组p,q使得ax*by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使用C++的实现:

int exGcd(int a, int b, int &x, int &y)

{

if(b == 0)

{

x = 1;

y = 0;

return a; ---很难找出一个这么实现的价值,因为扩展欧几里得还有更大的用途;个人认为定义全局数组更好,不用return r。

}

int r = exGcd(b, a % b, x, y);

int t = x;

x = y;

y = t - a / b * y;

return r;

}

把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。

可以这样思考:

对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')

由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)

那么可以得到:

a'x + b'y = Gcd(a', b') ===>

bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>

ay +b(x - a / b*y) = Gcd(a, b)

因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)

补充:关于使用扩展欧几里德算法解决不定方程的办法

对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。

上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,/*p * a+q * b = Gcd(a, b)的其他整数解满足:

p = p0 + b/Gcd(a, b) * t

q = q0 - a/Gcd(a, b) * t(其中t为任意整数)

至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可。*/有问题

在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是

得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),p * a+q * b = c的其他整数解满足:

p = p1 + b/Gcd(a, b) * t

q = q1 - a/Gcd(a, b) * t(其中t为任意整数)

p 、q就是p * a+q * b = c的所有整数解。

“有问题”的一段已经标出

也就是在得出p * a+q * b = Gcd(a, b)的解后是先乘上c/Gcd(a, b)从而导出p * a+q * b = c的其他整数解,

还是先导出p * a+q * b = Gcd(a, b)的其他整数解再乘上c/Gcd(a, b)。

编程时 exgcd 更多用于求解“中国余数定理”相关知识 举个例子 比如n除以5余2 除以13余3 那么n最小是多少,所有的n满足什么条件?

n(min)=42

n=23+k*65

这又涉及了求模运算,比较繁琐,有兴趣的人可以看看算法导论。这里不再赘述。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有