共轭复数

两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。
根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称(详见附图)。
1.代数特征:
(1)|z|=|z′|;
(2)z+z′=2a(实数),z-z′=2bi;
(3)z• z′=|z|^2=a^2+b^2(实数);
(4)z″=z.
2.运算特征:
(1)(z1+z2)′=z1′+z2′
(2) (z1-z2)′=z1′-z2′
(3) (z1·z2)′=z1′·z2′
(4) (z1/z2)′=z1′/z2′ (z2≠0)
3 模的运算性质:
① | z1·z2| = |z1|·|z2|
②

③┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
| z1-z2| = | z1-z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线
ps:z′表示复数z的共轭复数(实际形式为z上一横),z″表示复数z的共轭复数的共轭复数(为z上两横)