自然底数

王朝百科·作者佚名  2010-04-08  
宽屏版  字体: |||超大  

对于数列{ ( 1 + 1/n )^n },

当n趋于正无穷时该数列所取得的极限就是e,即e = lim (1+1/n)^n。

数e的某些性质使得它作为对数系统的底时有特殊的便利。以e为底的对数称为自然对数。用不标出底的记号ln来表示它;在理论的研究中,总是用自然对数。

历史上误称自然对数为纳皮尔对数,取名于对数的发明者——苏格兰数学家纳皮尔(J.Napier A.D.16-17)。纳皮尔本人并不曾有过对数系统的底的概念,但他的对数相当于底数接近1/e的对数。与他同时代的比尔吉(J.Burgi)则创底数接近e的对数。

通过二项式展开,取其部分和,可得e的近似计算式

e = 1 + 1/1! + 1/2! + ... + 1/n! + theta/n!*n,n越大,越接近的真值,要求到最后一项小于1e-5为止。

其中最后一项为余项,它控制计算所需达到的任意精度。

P.S. e = 2.718 281 828 459 045 ...

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有