王朝百科
分享
 
 
 

椭圆积分

王朝百科·作者佚名  2010-04-08  
宽屏版  字体: |||超大  

椭圆积分

在积分学中,椭圆积分最初出现于椭圆的弧长有关的问题中。Guilio Fagnano和欧拉是最早的研究者。现代数学将椭圆积分定义为可以表达为如下形式的任何函数f的积分

其中R是其两个参数的有理函数,P是一个无重根的3或4阶多项式的平方根,而c是一个常数。

通常,椭圆积分不能用基本函数表达。这个一般规则的例外出现在P有重根的时候,或者是R(x,y)没有y的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。(也即,第一,第二,和第三类的椭圆积分)。

除下面给出的形式之外,椭圆积分也可以表达为勒让德形式和Carlson对称形式。通过对施瓦茨-克里斯托费尔映射的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数是作为椭圆积分的逆函数被发现的,特别是这一个:F(sn(z;k);k) =z其中sn是雅可比椭圆函数之一。

记法

椭圆积分通常表述为不同变量的函数。这些变量完全等价(它们给出同样的椭圆积分),但是它们看起来很不相同。很多文献使用单一一种标准命名规则。在定义积分之前,先来检视一下这些变量的命名常规:

模角;椭圆模;参数; 上述三种常规完全互相确定。规定其中一个和规定另外一个一样。椭圆积分也依赖于另一个变量,可以有如下几种不同的设定方法:

幅度x其中u,其中x= snu而sn是雅可比椭圆函数之一 规定其中一个决定另外两个。这样,它们可以互换地使用。注意u也依赖于m。其它包含u的关系有

后者有时称为δ幅度并写作。有时文献也称之为补参数,补模或者补模角。这些在四分周期中有进一步的定义。

[编辑] 第一类不完全椭圆积分第一类不完全椭圆积分F定义为

与此等价,用雅可比的形式,可以设 ;则

其中,假定任何有竖直条出现的地方,紧跟竖直条的变量是(如上定义的)参数;而且,当反斜杠出现的时候,跟着出现的是模角。 在这个意义下,,这里的记法来自标准参考书Abramowitz and Stegun。使用限界符;| 是椭圆积分中的传统做法。

但是,还有许多不同的常规用于椭圆积分的记法。取值为椭圆积分的函数没有(象平方根,正弦和误差函数那样的)标准和唯一的名字。甚至关于该领域的文献也常常采用不同的记法。Gradstein, Ryzhik [1], Eq.(8.111)]采用。该记法和这里的;以及下面的等价。

和上面的不同对应的是,如果从Mathematica语言翻译代码到Maple语言,必须将EllipticK函数的参数用它的平方根代替。反过来,如果从Maple翻到Mathematica,则参数应该用它的平方代替。Maple中的EllipticK(x)几乎和Mathematica中的EllipticK[x^2]相等;至少当0<x<1时是相等的。

注意

其中u如上文所定义:由此可见,雅可比椭圆函数是椭圆积分的逆。

[编辑] 第二类不完全椭圆积分第二类不完全椭圆积分E是

与此等价,采用另外一个记法(作变量替换),

其它关系包括

[编辑] 第三类不完全椭圆积分第三类不完全椭圆积分是

或者

或者

数字n称为特征数,可以取任意值,和其它参数独立。但是要注意对于任意是无穷的。

[编辑] 第一类完全椭圆积分如果幅度为pi/2或者x=1,则称椭圆积分为完全的。第一类完全椭圆积分K可以定位为

或者

它是第一类不完全椭圆积分的特例:

这个特例可以表达为幂级数

它等价于

其中n!!表示双阶乘。采用高斯的超几何函数,第一类完全椭圆积分可以表达为

第一类完全椭圆积分有时称为四分周期。它可以采用算术几何平均值计算。

[编辑] 特殊值

[编辑] 第一类完全椭圆积分的导数}-

[编辑] 第二类完全椭圆积分第二类完全椭圆积分E可以定义为

或者

它是第二类不完全椭圆积分的特殊情况:

它可以用幂级数表达

也就是

用高斯超几何函数表示的话,第二类完全椭圆积分可以写作

[编辑] 特殊值

[编辑] 第二类完全椭圆积分的导数

[编辑] 第三类完全椭圆积分第三轮完全椭圆积分Π可以定义为

注意有时第三类椭圆积分被定义为带相反符号的n,也即

[编辑] 第三类完全椭圆积分的导数

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格&#8203;十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有