函数的有界性

王朝百科·作者佚名  2010-04-10  
宽屏版  字体: |||超大  

函数的有界性

定义:

如果对于变量x所考虑的范围(用D表示)内,存在一个正数M,使在D上的函数值f(x)都满足

│f(x)│≤M ,

则称函数y=f(x)在D上有界,亦称f(x)在D上是有界函数.如果不存在这样的正数M,则称函数y=f(x)在D上无界,亦称f(x)在D上是无界函数.

举例:

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有