隔板法
隔板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。
应用隔板法必须满足三个条件:
(1) 这n个元素必须互不相异
(2) 所分成的每一组至少分得一个元素
(3) 分成的组别彼此相异
组合不排列的情况可以用隔板法
例如:某校组建一球队需16人,该校共10个班级,共有几种情况?
解:(16-1)P(10-1)=1816214400种
隔板法就是在n个元素间的(n-1)个空中插入 若干个(b)个板,可以把n个元素分成(b+1)组的方法。
应用隔板法必须满足三个条件:
(1) 这n个元素必须互不相异
(2) 所分成的每一组至少分得一个元素
(3) 分成的组别彼此相异
组合不排列的情况可以用隔板法
例如:某校组建一球队需16人,该校共10个班级,共有几种情况?
解:(16-1)P(10-1)=1816214400种