圆锥摆

王朝百科·作者佚名  2010-04-17  
宽屏版  字体: |||超大  

圆锥摆

在长为L的细绳下端拴一个质量为m的小物体,绳子上端固定,设法使小物体在水平圆周上以大小恒定的速度旋转,细绳就掠过圆锥表面,这就是圆锥摆。可知,小球做圆周运动的圆心是O,做圆周运动的半径是Lsinθ,小球所需的向心力实际是绳子拉力F与重力G的合力。并有F合=mg•tgθ=mω^2Lsinθ。由此式可得 cosθ=g/(ω^2L) 这说明做圆锥运动的小球的摆线与竖直方向的夹角与摆球质量无关,与摆线长度及角速度有关。当摆长一定时,角速度越大,θ越大。由于绳子的拉力F=mg/cosθ=mg/(g/ω^2L)=mω^2L。可见绳子的拉力随角速度的增加而增大。圆锥摆的周期公式 T=2π√(Lcosθ/g) 在地球表面同一地点,圆锥摆的周期与 √(Lcosθ) 成正比,而与小球质量无关。若摆线L为定长,则ω越大,θ越大,周期越小。

圆锥摆在摆动中机械能守恒。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有