解三角形
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。可以利用正弦定理和余弦定理等求解。
正弦定理
a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)
正弦定理的变形公式
(1) a=2RsinA, b=2RsinB, c=2RsinC;
(2) sinA : sinB : sinC = a : b : c;
余弦定理
a^2=b^2+c^2-2bcCosA
b^2=a^2+c^2-2acCosB
c^2=a^2+b^2-2abCosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
海伦定理
公式里的p为半周长:
p=(a+b+c)/2
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]