磷光
当处于基态的分子吸收紫外-可见光后,即分子获得了能量,其价电子就会发生能级跃迁,从基态跃迁到激发单重态的各个不同振动能级,并很快以振动驰豫的方式放出小部分能量达到同一电子激发态的最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为荧光。
如果受激发分子的电子在激发态发生自旋反转,当它所处单重态的较低振动能级与激发三重态的较高能级重叠时,就会发生系间窜跃,到达激发激发三重态,经过振动驰豫达到最低振动能级,然后以辐射形式发射光子跃迁到基态的任一振动能级上,这时发射的光子称为磷光。
磷光是一种缓慢发光的光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度[1]),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与-{zh-cn:荧光;zh-tw:萤光}-过程不同,当入射光停止后,发光现象持续存在。发出磷光的退激发过程是被量子力学的跃迁选择规则禁戒的,因此这个过程很缓慢。所谓的"在黑暗中发光"的材料通常都是磷光性材料,如夜明珠。
机制
电子依照泡利不相容原理排布在分子轨道上,当分子吸收入射光的能量後,其中的电子从基态S0(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。处於激发态的电子可以通过各种不同的途径释放其能量回到基态。比如电子可以从经由非常快的(短於10 秒)内转换过程无辐射跃迁至能量稍低并具有相同自旋多重度的激发态,然後从经由系间跨越过程无辐射跃迁至能量较低且具有不同自旋多重度的激发态(通常为自旋三重态),再经由内转换过程无辐射跃迁至激发态,然後以发光的方式释放出能量而回到基态S0。由於激发态和基态S0具有不同的自旋多重度,虽然这一跃迁过程在热力学上有利,可是它是被跃迁选择规则禁戒的,从而需要很长的时间(从10 秒到数分钟乃至数小时不等)来完成这个过程;当停止入射光後,物质中还有相当数量的电子继续保持在亚稳态上并持续发光直到所有的电子回到基态。
公式
那里S是自旋单重态,T是自旋三重态,*表示激发态,h是普朗克常数。