积分方程
积分方程是含有对未知函数的积分运算的方程,与微分方程相对。许多数学物理问题需通过积分方程或微分方程求解。
积分方程是近代数学的一个重要分支。数学、自然科学和工程技术领域中的许多问题都可以归结为积分方程问题。正是因为这种双向联系和深入的特点,积分方程论得到了迅速地发展,成为包括众多研究方向的数学分支。
积分方程理论的发展,始终与数学物理问题的研究紧密相联,它在工程、力学等方面有着极其广泛的应用。通常认为,最早自觉应用积分方程并求出解的是阿贝尔(Abel),他在1823年研究质点力学问题时引出阿贝尔方程。此前,拉普拉斯(Laplace)於1782年在数学物理中研究拉普拉斯变换的逆变换以及傅里叶(Fourier)於1811年研究傅里叶变换的反演问题实际上都是解第一类积分方程。随着计算技术的发展,作为工程计算的重要基础之一,积分方程进一步得到了广泛而有效地应用。如今,“物理问题变得越来越复杂,积分方程变得越来越有用”。
积分方程与数学的其他分支,例如,微分方程、泛函分析、复分析、计算数学、位势理论和随机分析等都有着紧密而重要地联系。甚至它的形成和发展是很多重要数学思想和概念的最初来源和模型。例如,对泛函分析中平方可积函数、平均收敛、算子等的形成,对一般线性算子理论的创立,以至於对整个泛函分析的形成都起着重要的推动作用。积分方程论中许多思想和方法,例如,关於第二种弗雷德霍姆(Fredholm)积分方程的弗雷德霍姆理论和奇异积分方程的诺特(Noether)理论以及逐次逼近方法,本身就是数学中经典而优美的理论和方法之一。