充分必要条件
定义如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。
简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。(A可以推导出B,且B也可以推导出A)
例如:
1. A三角形等边;B三角形等角。
2. A某人触犯了刑律;B应当依照刑法对他处以刑罚。
3. A付了足够的钱;B能买到商店里的东西。
例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。
生活中的充分必要条件生活中表达充分必要条件的情况不太常见。在逻辑学和数学中一般用“当且仅当”来表示充分必要条件。例如:
1. 当且仅当竞争对手甲退出投标时,乙才会报一个较高的价位。
2. a、b为任意实数时,a^2+b^2 ≥ 2ab 成立,当且仅当a=b时取等号。(a^2表示a的平方)
其他常见的表示充分必要条件的说法还有:“需要且只需要”、“唯一条件”和例7的情况。例如:
3. 任何两个端节点之间的转发需要且只需要经过三次交换。
4. 为了防止圆管内流动的水发生结冰,则需要且只需要保持圆管内壁面的最低温度在某一温度以上。
5. 俄军逼近格首都称停火唯一条件是格军放弃武力。
6. 法院判决离婚的唯一条件是夫妻感情破裂。
7. 人不犯我,我不犯人;人若犯我,我必犯人。
唯一条件唯一条件(或唯一的条件):即充分必要条件。
例句:
1. 中国各类兴奋剂出口的唯一条件是有合法用途。
2. 小张同意离婚的唯一条件就是付给自己至少7万元的初婚费,否则她就不同意。
3. 参加这个俱乐部的唯一条件是你的姓氏是史密斯。
4. 邪恶盛行的唯一条件是善良者的沉默。
5. 伊朗同意在俄提炼浓缩铀的唯一条件是要中国参与。
6. 进入这个学校读书的唯一条件是一次性交纳两万元赞助费。
句1可以这样分析:满足“有合法用途”,必然“兴奋剂能出口”;不满足“有合法用途”,必然“兴奋剂不能出口”,所以“唯一条件”就是充分必要条件的意思。对其他句子可作相同的分析。
生活中,人们不常使用准确的语言来表述充分必要条件,而是只强调充分必要条件的充分性,或者只强调充分必要条件的必要性。例如句子6,人们通常会说,只要一次性交纳两万元赞助费,就可以进入这个学校读书(强调充分性);或者人们会说,只有一次性交纳两万元赞助费,才可以进入这个学校读书(强调必要性)。类似的例子还有:
7. 只要你买了体育彩票就有中(体彩)500万元的机会。
8. 只有您在当当网购买这件商品之后,才可对它发表评论。
9. 处理后的污水只有达到了城市污水处理标准才可以排入城市污水处理厂。
10. 护坝人只有履行了管护合同中规定的义务,才可以得到合同中规定的全部报酬。
11. 秘鲁政府只有决定提高玉米关税税率,秘鲁农民才同意征收玉米的经营税。
12. 只有第一批蝗虫产过卵以后你的蝗虫养殖才算是成功了。
这些例子中包含的条件关系事实上是充分必要条件,但是说话人没有当成充分必要条件处理,而是仅仅表达了条件是充分的——即满足A,必然B(例7);或者仅仅表达了条件是必要的——即不满足A,必然不B(例8到例12)。
逻辑学中的充分必要条件定义:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件。
充分必要条件是逻辑学在研究假言命题及假言推理时引出的。
陈述某一事物情况是另一件事物情况的充分必要条件的假言命题叫做充分必要条件假言命题。充分必要条件假言命题的一般形式是:p当且仅当q。符号为:p←→q(读作“p等值q”) 。例如“三角形等边当且仅当三角形等角。”是一个充分必要条件假言命题。
根据充分必要条件假言命题的逻辑性质进行的推理叫充分必要条件假言推理。
数学中的充分必要条件有命题p、q,如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。
例如:a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。
简单的说就是在证p与q时,前面那个推出后面那个就是充分条件,后面那个推出前面那个就是必要条件,前面能推出后面后面也能推出前面就是充要条件。