实分析(影印版)

王朝百科·作者佚名  2010-05-16  
宽屏版  字体: |||超大  

实分析(影印版)

作者:(美)德贝内代托

ISBN:10位[7040226650] 13位[9787040226652]

出版社:高等教育出版社

出版日期:2007-10-1

定价:¥39.50 元

内容提要本书是一本内容十分翔实的实分析教材。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含 Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理, Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。

本书内容由浅入深。读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。

编辑推荐本书主要包含国外反映近代数学发展的纯数学与应用数学方面的优秀书籍,天元基金邀请国内各个方向的知名数学家参与选题的工作,经专家遴选、推荐,由高等教育出版社影印出版。本书可作为高年级本科生教材或参考书。

目录Preface

Acknowledgments

Preliminaries

1 Countable sets

2 The Cantor set

3 Cardinality

3.1 Some examples

4 Cardinality of some infinite Cartesian products

5 Orderings, the maximal principle, and the axiom of choice

6 Well-ordering

6.1 The first uncountable

Problems and Complements

Ⅰ Topologies and Metric Spaces

1 Topological spaces

1.1 Hausdorff and normal spaces

2 Urysohn's lemma

3 The Tietze extension theorem

4 Bases, axioms of countability, and product topologies

4.1 Product topologies

5 Compact topological spaces

5.1 Sequentially compact topological spaces

6 Compact subsets of RN

7 Continuous functions on countably compact spaces

8 Products of compact spaces

9 Vector spaces

9.1 Convex sets

9.2 Linear maps and isomorphisms

10 Topological vector spaces

10.1 Boundedness and continuity

11 Linear functionals

12 Finite-dimensional topological vector spaces

12.1 Locally compact spaces

13 Metric spaces

13.1 Separation and axioms of countability

13.2 Equivalent metrics

13.3 Pseudometrics

14 Metric vector spaces

14.1 Maps between metric spaces

15 Spaces of continuous functions

15.1 Spaces of continuously differentiable functions

16 On the structure of a complete metric space

17 Compact and totally bounded metric spaces

17.1 Precompact subsets of X

Problems and Complements

Ⅱ Measuring Sets

1 Partitioning open subsets of RN

2 Limits of sets, characteristic functions, and or-algebras

3 Measures

3.1 Finite,a-finite, and complete measures

3.2 Some examples

4 Outer measures and sequential coverings

4.1 The Lebesgue outer measure in RN

4.2 The Lebesgue-Stieltjes outer measure

5 The Hausdorff outer measure in RN

6 Constructing measures from outer measures

7 The Lebesgue--Stieltjes measure on R

7.1 Borel measures

8 The Hausdorff measure on RN

9 Extending measures from semialgebras to a-algebras

9.1 On the Lebesgue-Stieltjes and Hausdorff measures

10 Necessary and sufficient conditions for measurability

11 More on extensions from semialgebras to a-algebras

12 The Lebesgue measure of sets in RN

12.1 A necessary and sufficient condition of naeasurability

13 A nonmeasurable set

……

Ⅲ The Lebesgue Integral

Ⅳ Topics on Measurable Functions of Real Variables

Ⅴ The Lp(E)Spaces

Ⅵ Banach Spaces

Ⅶ Spaces of Continuous Functions,Distributions,and Weak

Ⅷ Topics on Integrable Functions of Real Variables

Ⅸ Embeddings of W1,p(E)into Lq(E)

References

Index

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有