三角形内心
定义在三角形中,三个角的角平分线的交点是这个三角形内切圆的圆心而三角形内切圆的圆心就叫做三角形的内心,
三角形内心的性质设⊿ABC的内切圆为☉I(r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.
1、三角形的三条角平分线交于一点,该点即为三角形的内心.
2、三角形的内心到三边的距离相等,都等于内切圆半径r.
3、r=S/p.
4、在Rt△ABC中,∠C=90°,r=(a+b-c)/2.
5、∠BIC=90°+A/2.
6、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:
a(向量OA)+b(向量OB)+c(向量OC)=向量0.
7、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:
向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).
8、⊿ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么⊿ABC内心I的坐标是:
(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)).
9、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
10、(内角平分线分三边长度关系)
⊿ABC中,0为内心,∠A 、∠B、 ∠C的内角平分线分别交BC、AC、AB于Q、P、R,
则BQ/QA=a/b, CP/PA=a/c, BR/RC=c/b.