第二积分中值定理

王朝百科·作者佚名  2010-05-28  
宽屏版  字体: |||超大  

第二积分中值定理:

若1)f(x)在[a,b]上非负递减,

(2)g(x)在[a,b]上可积,

则存在c属于开区间(a,b)使f(x)g(x)在[a,b]积分值等于f(a+0)乘以g(x)在[a,c]上的积分值.

推论

若(1)f(x)在[a,b]单调,

(2)g(x)在[a,b]可积,

则存在c属于开区间 (a,b),使 f(x)g(x)在[a,b]积分值等于f(a+0)乘以g(x)在[a,c]积分值与f(b-0)乘以g(x)在[c,b]积分值之和.

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有