王朝百科
分享
 
 
 

辗除法

王朝百科·作者佚名  2010-06-30  
宽屏版  字体: |||超大  

辗除法——辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至3000年前。它首次出现于欧几里德的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。

证明:

设两数为a、b(b<a),求它们最大公约数(a、b)的步骤如下:用b除a,得a=bq......r 1(0≤r)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b=r1q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1,……如此下去,直到能整除为止。其最后一个非零余数即为(a,b)。

[编辑] 算法

辗转相除法是利用以下性质来确定两个正整数 a 和 b 的最大公因子的:

1. 若 r 是 a ÷ b 的余数, 则

gcd(a,b) = gcd(b,r)

2. a 和其倍数之最大公因子为 a。

另一种写法是:

1. a ÷ b,令r为所得余数(0≤r<b)

若 r = 0,算法结束;b 即为答案。

2. 互换:置 a←b,b←r,并返回第一步。

[编辑] 虚拟码

这个算法可以用递归写成如下:

function gcd(a, b) {

if b<>0

return gcd(b, a mod b);

else

return a;

}

或纯使用循环:

function gcd(a, b) {

define r as integer;

while b ≠ 0 {

r := a mod b;

a := b;

b := r;

}

return a;

}

pascal代码(递归)

求两数的最大公约数

function gcd(a,b:integer):integer;

begin

if b=0 then gcd:=a

else gcd:=gcd (b,a mod b);

end ;

其中“a mod b”是指取 a ÷ b 的余数。

例如,123456 和 7890 的最大公因子是 6, 这可由下列步骤看出:

a b a mod b

123456 7890 5106

7890 5106 2784

5106 2784 2322

2784 2322 462

2322 462 12

462 12 6

12 6 0

只要可计算余数都可用辗转相除法来求最大公因子。这包括多项式、复整数及所有欧几里德定义域(Euclidean domain)。

辗转相除法的运算速度为 O(n2),其中 n 为输入数值的位数。

辗转相除法原理及其详细证明如下:

“辗转相除法”又叫做“欧几里得算法”,是公元前 300 年左右的希腊数学家欧几里得在他的著作《几何原本》提出的。利用这个方法,可以较快地求出两个自然数的最大公因数,即gcd 或叫做HCF 。

最大公约数(greatest common divisor,简写为gcd;或highest common factor,简写为hcf)

所谓最大公因数,是指几个数的共有的因数之中最大的一个,例如 8 和 12 的最大公因数是 4,记作gcd(8,12)=4。

在介绍这个方法之前,先说明整除性的一些特点(下文的所有数都是正整数,不再重覆),我们可以这样给出整除性的定义:

对于二个自然数a和b,若存在正整数q,使a=bq,则a能被b整除,b为a的因子,a为b的倍数。

如果a能被c整除,并且b也能被c整除,则c为a、b的公因数(公有因数)。

由此我们可以得出以下推论:

推论1、如果a能被b整除(a=qb),若k为正整数,则ka也能被b整除(ka=kqb)

推论2、如果a能被c整除(a=hc),b也能被c整除(b=tc),则(a±b)也能被c整除

因为:将二式相加:a+b=hc+tc=(h+t)c 同理二式相减:a-b=hc-tc=(h-t)c

所以:(a±b)也能被c整除

推论3、如果a能被b整除(a=qb),b也能被a整除(b=ta),则a=b

因为:a=qbb=taa=qta qt=1 因为q、t均为正整数,所以t=q=1

所以:a=b

辗转相除法是用来计算两个数的最大公因数,在数值很大时尤其有用,而且应用在电脑程式上也十分简单。其理论如下:

如果 q 和 r 是 m 除以 n 的商及余数,即 m=nq+r,则 gcd(m,n)=gcd(n,r)。

证明是这样的: 设 a=gcd(m,n),b=gcd(n,r)

a=gcd(m,n)

m能被a整除,并且n也能被a整除,则由推论1得:qn也能被a整除

由推论2得:m-qn也能被a整除

而m-qn=r,即r也能被a整除,所以a=b

b=gcd(n,r)

n能被b整除,并且r也能被b整除,则由推论1得:qn也能被b整除

由推论2得:qn+r也能被b整除

而m=qn+r,即m也能被b整除,所以a=b

例如计算 gcd(546, 429)

gcd(546, 429) 546=1*429+117

=gcd(429, 117) 429=3*117+78

=gcd(117, 78) 117=1*78+39

=gcd(78, 39) 78=2*39

=39

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格&#8203;十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有