代数闭链

王朝百科·作者佚名  2010-07-01  
宽屏版  字体: |||超大  

代数闭链是代数几何和Hodge理论中的重要概念。

在一个复n维的代数簇M 中, 一条复p维的闭链 (cycle)如果可以用一些多项式方程组的零点集来定义, 就成为代数闭链, 比如记为 Z.

因为Z可以看成是实2p维闭链, 所以我们可以写为Z∈H_{2p}(M, Q ), 这里 Q是有理数域.

利用庞加莱对偶, 我们记[Z]∈H^{2p}(M, Q) 是Z 对应的上同调闭链。

由庞加莱对偶和Hodge分解在相交型下的正交性, 人们可以检验以下简单的事实:

H^{2p}(M, Q )中的代数闭链同调类全体包含于H^{2p}(M, Q )∩H^{p,p}(M).

这里 H^{1,1}(M) 是指M上的(1,1)形式同调类全体.

Hodge理论中最著名的Hodge猜想就是问:

上述的包含关系是不是可以替换位等号。 也就是说,

{H^{2p}(M, Q )中的代数闭链同调类全体}=于H^{2p}(M, Q )∩H^{p,p}(M).

这个著名的猜想是数学七大猜想之一, 也是最难于让大众了解的一个猜想.

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有