王朝百科
分享
 
 
 

图像多尺度几何分析理论与应用

王朝百科·作者佚名  2010-07-08  
宽屏版  字体: |||超大  

版权信息书 名: 图像多尺度几何分析理论与应用

图像多尺度几何分析理论与应用

作者:焦李成 王爽

出版社:西安电子科技大学出版社

出版时间: 2008

ISBN: 9787560620275

开本: 16

定价: 50.00 元

内容简介本书从函数的非线性逼近出发,介绍了多尺度几何分析方法和理论,以及在图像处理领域中的应用。全书共13章,第1章系统地介绍了推动多尺度几何分析发展的数学和生理学背景,综述了图像的多尺度几何分析方法的历史沿革、最新成果及存在的问题;第2章从神经网络、统计估计、逼近论、调和分析等角度研究了多变量目标函数的逼近问题,并指出了这一领域研究的有关问题以及在信号和图像处理中的应用;第3章论述了基于脊波变换的直线特征检测方法;第4章介绍了脊波双框架系统;第5章介绍了自适应连续脊波网络;第6~13章分别介绍了曲线波、梳状波、子束波、楔形波、轮廓波、条带波、方向波和剪切波的基本理论及其应用,应用范围涉及图像压缩、去噪、融合、分割和分类等不同方面。本书从第3章起每一章都给出了相应的实验方法和实验结果。

本书可作为高校电子工程、信号与信息处理、应用数学等专业的高年级本科生或研究生的教材,也可作为从事多尺度几何分析和数字图像处理方面研究工作的科技工作者的参考资料。

目录第1章绪论

1.1引言

1.2稀疏逼近

1.3从Fourier分析到小波分析

1.4多尺度几何分析

1.5多尺度几何变换

1.5.1脊波及单尺度脊波变换

1.5.2曲线波(Curvelet)

1.5.3梳状波(Brushlet)

1.5.4子束波(Beamlet)

1.5.5楔形波(Wedgelet)

1.5.6轮廓波(Contourlet)

1.5.7条带波(Bandelet)

1.5.8方向波(Directionlet)

1.5.9剪切波(Shearlet)

1.6多尺度几何变换的逼近性质

1.7存在的问题和进一步研究的方向

1.8本章小结

本章参考文献

第2章基函数网络逼近

2.1引言

2.2多变量目标函数的逼近

2.2.1神经网络的逼近和学习

2.2.2统计估计

2.2.3逼近论

2.2.4调和分析

2.2.5小波神经网络

2.3脊波的发展现状及应用前景

2.3.1脊波现有的成果

2.3.2连续和离散脊波变换

2.4存在的问题和进一步研究的方向

2.5本章小结

本章参考文献

第3章基于脊波变换的直线特征检测

3.1引言

3.2图像的离散脊波变换

3.2.1基于投影切片定理的Radon变换

3.2.2二进小波变换

3.2.3二维离散脊波变换

3.2.4脊波子带的产生

3.3基于脊波变换的直线特征检测

3.4实验结果

3.5本章小结

本章参考文献

第4章脊波双框架系统

4.1引言

4.2脊波、正交脊波和脊波框架

4.3Radon域中对偶框架的构造

4.4从到L2(2)的等距映射

4.5L2(R2)中的对偶框架

4.6对偶框架的性质

4.7去噪实验

4.8本章小结

本章参考文献

第5章自适应连续脊波网络

5.1引言

5.2多尺度几何网络

5.3自适应连续脊波网络

5.4收敛性能分析

5.5实验结果

5.6本章小结

本章参考文献

第6章曲线波

6.1引言

6.2曲线波变换

6.3曲线波框架的性质

6.4第二代曲线波变换

6.5曲线波双框架系统

6.5.1曲线波双框架系统的构造

6.5.2实验结果与分析

6.6曲线波网络

6.6.1曲线波网络模型

6.6.2实验结果与分析

6.7基于方向及尺度乘积的曲线波去噪方法

6.7.1曲线波变换系数的特点

6.7.2基于方向及尺度乘积的曲线波去噪算法

6.7.3实验结果与分析

6.8基于曲线波隐马尔可夫树模型的SAR图像去噪

6.8.1曲线波隐马尔可夫树(HMT)模型

6.8.2基于曲线波HMT模型的图像去噪算法

6.8.3实验结果与分析

6.9基于曲线波的图像融合

6.9.1基于曲线波的图像融合方法

6.9.2评价标准

6.9.3实验结果与分析

6.10基于曲线波的纹理分类

6.10.1结合共生矩阵的曲线波特征提取及纹理分类算法

6.10.2Curvelet纹理分类实验

6.10.3实验结果与分析

6.11本章小结

本章参考文献

第7章梳状波

7.1引言

7.2梳状波变换理论

7.2.1一维梳状波基构造

7.2.2二维梳状波基构造

7.2.3图像的梳状波变换

7.2.4非下采样梳状波变换

7.3基于梳状波的纹理分类

7.3.1基于梳状波复特征的纹理分类

7.3.2基于非下采样梳状波纹理分类

7.4基于梳状波的图像分割

7.4.1融合梳状波方向特性的无监督图像分割

7.4.2基于非下采样梳状波变换的纹理图像分割

7.4.3基于梳状波共生矩阵的图像分割

7.4.4基于梳状波统计特征的纹理分割

7.4.5基于小波和梳状波变换域特征融合的无监督图像分割

7.5基于梳状波变换和径向基函数神经网络的指纹方向场提取

7.6梳状波变换分层编码压缩

7.6.1基于梳状波压缩算法

7.6.2对比实验及结果分析

7.7基于梳状波和Wedgelet的图像融合

7.7.1融合规则

7.7.2融合结果的评价指标

7.7.3基于梳状波和Wedgelet的图像融合算法

7.7.4对比实验及结果分析

7.7.5小结

7.8本章小结

本章参考文献

第8章子束波

8.1引言

8.2Beamlet框架的构造

8.3Beamlet分析

8.3.1Beamlet字典

8.3.2Beamlet变换

8.3.3Beamlet金字塔

8.3.4Beamlet图

8.4Beamlet算法设计

8.4.1无结构算法

8.4.2树状结构算法

8.4.3线段的局部链接

8.4.4线段的全部链接

8.5本章小结

本章参考文献

第9章楔形波

9.1引言

9.2楔形波概述

9.2.1楔形波基本理论

9.2.2楔形波分解

9.2.3楔形波构造

9.3楔形波逼近理论及其改进算法

9.3.1楔形波逼近理论

9.3.2楔形波逼近理论改进算法

9.3.3时间效率对比与改进算法的逼近效果

9.4基于楔形波的SAR图像边缘检测

9.4.1楔形波基函数

9.4.2基于楔形波逼近理论改进算法的图像边缘检测

9.4.3结合MSP-RoA算法的楔形波的SAR图像边缘检测

9.5基于楔形波和对偶树复小波的SAR图像斑点噪声抑制

9.5.1算法构造

9.5.2试验结果与分析

9.6基于Cartoon与纹理模型的楔形波图像压缩

9.6.1算法构造

9.6.2实验结果与分析

9.7基于楔形波的图像融合

9.7.1融合规则

9.7.2融合结果的评价指标

9.7.3基于楔形波的图像融合

9.7.4实验结果与分析

9.8本章小结

本章参考文献

第10章轮廓波

10.1引言

10.2轮廓波变换

10.3非下采样轮廓波变换

10.4基于轮廓波的SAR图像相干斑抑制

10.4.1基于轮廓波HMM的SAR图像相干斑抑制

10.4.2统计先验指导的NSCT域SAR图像降斑

10.5基于非下采样轮廓波变换的图像融合

10.5.1基于活性测度和闭环反馈的NSCT域遥感图像融合

10.5.2基于克隆选择和NSCT的红外与可见光图像融合

10.5.3基于NSCT和LHS变换的多光谱和高分辨图像融合

10.6基于轮廓波的纹理分割与分类

10.6.1结合多层小波和轮廓波分解的纹理图像分割

10.6.2基于SVM和多层小波轮廓波分解的纹理图像分割

10.6.3基于WBCT和克隆选择算法的纹理图像分类

10.6.4基于SWBCT的纹理图像分类

10.7基于轮廓波的目标识别

10.7.1基于轮廓波和核Fisher判别分析的特征提取

10.7.2基于小波和轮廓波的目标识别

10.7.3基于SWBCT和投影方法的目标识别

10.7.4基于最优轮廓波包网络的目标识别

10.8本章小结

本章参考文献

第11章条带波

11.1引言

11.2小波逼近和几何图像表示

11.2.1基于视觉特性的图像处理现状

11.2.2小波的非线性图像逼近

11.2.3几何图像表示

11.3第一代条带波变换

11.3.1条带波基

11.3.2弯曲小波变换

11.3.3快速离散条带波变换

11.4第二代条带波变换

11.4.1第二代条带波的构造思想

11.4.2第二代条带波的主要实现步骤

11.4.3最优几何方向的选择

11.5基于第二代条带波变换的图像压缩

11.5.1基于第二代条带波变换的图像压缩编码

11.5.2基于第二代条带波和SPIHT的图像压缩

11.5.3基于图像分层表示的第二代条带波域图像压缩

11.6基于第二代条带波变换的图像去噪

11.6.1基于第二代条带波的多层自适应阈值的图像去噪

11.6.2基于平稳第二代条带波的图像去噪

11.6.3基于广义交叉验证和第二代平移不变条带波的SAR图像相干斑抑制

11.6.4结论

11.7基于第二代条带波变换的多聚焦图像融合

11.8基于第二代条带波变换的图像分割

11.9本章小结

本章参考文献

第12章方向波

12.1引言

12.2各向异性二维小波分解

12.2.1完全可分离小波变换

12.2.2各向异性小波变换

12.3基于格的斜小波变换

12.3.1整数格理论

12.3.2斜小波变换

12.3.3多相表示

12.4基于整数格边缘检测的图像融合

12.4.1基于整数格的边缘提取

12.4.2图像融合准则

12.4.3算法实现策略

12.4.4融合结果评估

12.4.5对比实验及结果分析

12.4.6结论

12.5融合纹理奇异性的图像分割

12.5.1基于灰度共生矩阵的特征提取

12.5.2基于小波变换的特征提取

12.5.3基于整数格的特征提取

12.5.4对比实验及结果分析

12.5.5结论

12.6本章小结

本章参考文献

第13章剪切波

13.1引言

13.2剪切波

13.3使用连续剪切波分析边缘

13.4离散剪切波变换

13.5本章小结

本章参考文献

……

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有