图像梯度

王朝百科·作者佚名  2010-07-20  
宽屏版  字体: |||超大  

图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导:

图像梯度: G(x,y) = dx i + dy j;

dx(i,j) = I(i+1,j) - I(i,j);

dy(i,j) = I(i,j+1) - I(i,j);

其中,I是图像像素的值(如:RGB值),(i,j)为像素的坐标。

图像梯度一般也可以用中值差分:

dx(i,j) = [I(i+1,j) + I(i-1,j)]/2;

dy(i,j) = [I(i,j+1) +I(i,j-1)]/2;

图像边缘一般都是通过对图像进行梯度运算来实现的。

上面说的是简单的梯度定义,其实还有更多更复杂的梯度公式。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有