平面方程
平面的一般方程:空间坐标系内,平面的方程均可用三元一次方程
Ax+By+Cz+D=0平面的截距式方程:设平面与三坐标轴的交点分别为P(a,0,0),Q(0,b,0),R(0,0,C)
则平面方程为x/a+y/b+z/c=1
上式称为平面的截距式方程平面的点法式方程n·MM'=0, n=(A,B,C),MM'=(x-x0,y-y0,z-z0)
A(x-x0)+B(y-y0)+C(z-z0)=0
三点求平面可以取向量积为法线
任一三元一次方程的图形总是一个平面,其中x,y,z的系数就是该平面的一个法线向量的坐标。
两平面互相垂直相当于A1A2+B1B2+C1C2=0
两平面平行或重合相当于A1/A2=B1/B2=C1/C2
点到平面的距离=abs(Ax0+By0+Cz0+D)/sqrt(A^2+B^2+C^2) 求解过程:面内外两点连线在法向量上的映射Prj(小n)(带箭头P1P0)=数量积