气体状态方程
理想气体状态方程又称克拉伯龙方程。它是描述理想气体在处于平衡态时,压强、体积、物质的量、温度间关系的状态方程。它建立在波义耳定律、查理定律、盖-吕萨克定律、阿伏伽德罗定律等经验定律上。
其方程为pV=nRT。这个方程有4个变量:p是指理想气体的压力,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数,值为8.315J/mol•K。可以看出,此方程的变量很多。因此此方程以其变量多、适用范围广而著称。
一定量处于平衡态的气体,其状态由p、V和T刻划,表达这几个量之间的关系的方程称之为气体的状态方程,不同的气体有不同的状态方程。但真实气体的方程通常十分复杂,而理想气体的状态方程具有非常简单的形式。
虽然完全理想的气体并不可能存在,但许多实际气体,特别是那些不容易液化、凝华的气体(如氦、氢气、氧气、氮气等,由于氦气不但体积小、互相之间作用力小、也是所有气体中最难液化的,因此它是所有气体中最接近理想气体的气体。)在常温常压下的性质已经十分接近于理想气体。
此外,有时只需要粗略估算一些数据,使用这个方程会使计算变得方便很多。
理想气体常数(或称摩尔气体常数、普适气体恒量)的数值随p和V的单位不同而异,以下是几种常见的表述:8.3144J/(mol·K)
实际气体状态方程常为人们引用的实际气体状态方程为范德瓦耳斯方程和H.开默林-昂内斯所提出的级数形式的方程。
18世纪,D.伯努利提出了气体分子的刚球模型,考虑到分子自身体积的影响,把气体状态方程改为p(V-b)=RT的形式。1873年J.D.范德瓦耳斯假设气体分子是有相互吸引力的刚球,作用力范围的半径大于分子的半径。气体分子在容器内部与在容器壁处受到的力不同,相当于气体的压强p┡比容器对气体所施加的外压强p要大一些,为p┡=p+p',p'叫气体的内压强。这个附加的压强与体积V的二次方成反比,等于,a是一个常量。再考虑分子自身的体积及平均自由程在分子运动中的作用把状态方程修改成:
[P实+a(n/v)2](P实-nb)=nRT
式中b也是一常数。a、b都要由实验确定。实验上测定a和b的方法很多,例如在一定温度下,测定两个已知压强对应的体积值,便可由范德瓦耳斯方程定出a和b的值。表中列出了一些常见气体的a、b的实测值。
范德瓦耳斯方程能较好地给出高压强下实际气体状态变化的关系,而且推广后可以近似地应用到液体状态。它是许多近似方程中最简单和使用最方便的一个。
开默林-昂内斯提出了一个按体积V的负幂次展开的级数形式的气体方程:
式中A、B、C…都是温度的函数,并与气体的性质有关。他把这些系数分别叫做第一、第二、第三、……维里系数。这是实际气体状态方程最完全的形式。