欧几里得距离

王朝百科·作者佚名  2010-08-17  
宽屏版  字体: |||超大  

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

d = sqrt((x1-x2)^+(y1-y2)^)

三维的公式是

d=sqrt(x1-x2)^+(y1-y2)^+(z1-z2)^)

推广到n维空间,欧式距离的公式是

d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有