DBSCAN

王朝百科·作者佚名  2010-08-29  
宽屏版  字体: |||超大  

DBSCAN(Density-Based Spatial Clustering of Applacations with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。

DBSCAN算法描述:

输入: 包含n个对象的数据库,半径e,最少数目MinPts;

输出:所有生成的簇,达到密度要求。

(1)Repeat

(2)从数据库中抽出一个未处理的点;

(3)IF抽出的点是核心点 THEN 找出所有从该点密度可达的对象,形成一个簇;

(4)ELSE 抽出的点是边缘点(非核心对象),跳出本次循环,寻找下一个点;

(5)UNTIL 所有的点都被处理。

DBSCAN对用户定义的参数很敏感,细微的不同都可能导致差别很大的结果,而参数的选择无规律可循,只能靠经验确定。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有