对易的算法
算符的对易的关系
设F和G为两个算符
若FG-GF=0,则F和G对易;
若FG-GF≠0,则F和G不对易;
引入易子:[F,G]=FG-GF
若[F,G]=0,则F和G对易;
若[F,G]≠0,则F和G不对易;
对易式满足下列恒等式:(设A,B,C表示算符)
[A,A]=0
[A,B]= -[B,A]
双线性:
[A, B+C]= [A, B] + [A, C]
[A+B,C]=[A,C]+[B,C]
[A, BC] = B[A, C] + [A, B]C
[AB, C] = A[B, C] + [A, C]B
雅可比恒等式:
[A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0
prove:
[A,BC]=ABC-BCA
=ABC-BAC+BAC-BCA
=[A,B]C+B[A,C]