王朝百科
分享
 
 
 

杨辉

王朝百科·作者佚名  2009-10-24  
宽屏版  字体: |||超大  

杨辉

南宋数学家杨辉,中国南宋时期杰出的数学家和数学教育家。字谦光,钱塘(今杭州)人,中国古代数学家和数学教育家,生平履历不详。由现存文献可推知,杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,他署名的数学书共五种二十一卷。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。与秦九韶、李治、朱世杰并趁称宋元数学四大家。

(一)主要著述

杨辉一生留下了大量的著述,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》。

《详解九章算法》现传本已非全帙,编排也有错乱。从其序言可知,该书乃取魏刘微注、唐李淳风等注释、北宋贾宪细草的《九章算术》中的80问进行详解。在《九章算术》9卷的基础上,又增加了3卷,一卷是图,一卷是讲乘除算法的,居九章之前;一卷是纂类,居书末今卷首图、卷l乘除,卷2方田、卷3粟米、卷4衰分的衰分、反衰诸题、卷6商功的诸同功问题已佚。卷4衰分下半卷、卷5少广存《永乐大典》残卷中,其余存《宜稼堂丛书》中。从残本的体例看,该书对《九章算术》的详解可分为:一、解题。内容为解释名词术语、题目含义、文字校勘以及对题目的评论等方面。二、明法、草。在编排上,杨辉采用大字将贾宪的法、草与自己的详解明确区分出来。三、比类。选取与《九章算术》中题目算法相同或类似的问题作对照分析。四、续释注。在前人基础上,对《九章算术》中的80问进一步作注释。杨辉的“纂类”,突破《九章算术》的分类格局,按照解法的性质,重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。

杨辉在《详解九章算法》一书中还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。

杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

.....................................

杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

《日用算法》,原书不传,仅有几个题目留传下来。从《算法杂录》所引杨辉自序可知该书内容梗概:“以乘除加减为法,秤斗尺田为问,编诗括十三首,立图草六十六问。用法必载源流,命题须责实有,分上下卷。”该书无疑是一本通俗的实用算书。

《乘除通变本末》三卷,皆各有题,在总结民间对等算乘除法的改进上作出了重大贡献。上卷叫《算法通变本末》,首先提出“习算纲目”,是数学教育史的重要文献,又论乘除算法;中卷叫《乘除通变算宝》,论以加减代乘除、求一、九归诸术;下卷叫《法算取用本末》,是对中卷的注解。

《田亩比类乘除捷法》,其上卷内容是《详解九章算法》方田章的延展,所选例子非常贴近实际。下卷主要是对刘益工作的引述。杨辉在《田亩比类乘除捷法》序中称“中山刘先生作《议古根源》。……撰成直田演段百间,信知田体变化无穷,引用带从开方正负损益之法,前古之所未闻也。作术逾远,罔究本源,非探喷索隐而莫能知之。辉择可作关键题问者重为详悉著述,推广刘君垂训之意。”《田亩比类乘除捷法》卷下征引了《议古根源》22个问题,主要是二次方程和四次方程的解法。

《续古摘奇算法》上卷首先列出20个纵横图,即幻方。其中第一个为河图,第二个为洛书,其次,四行、五行、六行、七行、八行幻方各两个,九行、十行幻方各一个,最后有“聚五”“聚六”:聚八”“攒九”“八阵”“连环”等图。有一些图有文字说明,但每一个图都有构造方法,使图中各自然数“多寡相资,邻壁相兼”凑成相等的和数。卷下评说《海岛》也有极高的科学价值。

杨辉著作大都注意应用算术,浅近易晓。其著作还广泛征引数学典籍和当时的算书,中国古代数学的一些杰出成果,比如刘益的“正负开方术”,贾宪的“开方作法本源图”“增乘开方法,”幸得杨辉引用,否则,今天将不复为我们知晓。

(二)主要研究成果

杨辉的数学研究与数学教育工作之重点在于改进筹算乘除计算技术,总结各种乘除捷算法,这是由当时的社会状况决定的。唐代中期以后,社会经济得到较大发展,手工业和商业交易都具有相当的规模,因而,人们在生产、生活中需要数学计算的机会,较前大大增加,这种情况迫切要求数学家们为人们提供便于掌握、快捷准确的计算方法。为适应社会对数学的这种需求,中晚唐时期出现了一些实用的算术书籍。但是,这些书籍除了《韩延算术》,被宋人误认为《夏侯阳算经》而刊刻流传到现在外,都已失传。《韩延算术》大约编写于公元770年前后,书中介绍了很多乘除捷法的例子。比如,某数乘以42可以化为某数乘以6,再乘以7;某数除以12可以化为某数除以2,再除以6。对于更复杂的问题可同样处理。通过将乘数、除数分解为一位数,可以使运算在一行内实现,简化了运算,提高了速度。韩延还介绍了其他一些简捷算法。比如“身外添加四”、“隔位加二”。北京科学家沈括也总结了增成、重因等捷算法。

杨辉生活在南宋商业发达的苏杭一带,进一步发展了乘除捷算法。他说:“乘除者本钩深致远之法。《指南算法》以‘加减’、‘九归’、‘求一’旁求捷径,学者岂容不晓,宜兼而用之。”在前人的基础上,他提出了“相乘六法”:一曰“单因”,即乘数为一位数的乘法;二曰“重因“,即乘数可分解为两个一位数的乘积的乘法;三曰“身前因”,即乘数末位为一的两位数乘法,比如257×21=257×20十257,实际上,身前因就是通过乘法分配律将多位数乘法化为一位数乘法和加法来完成。四曰相乘,即通常的乘法;五曰“重乘”,就是乘数可分解为两因数的积,作两次相乘;六曰“损乘”,是一种以减代乘法,比如,当乘数为9、8、7时,可以10倍被乘数中,减去被乘数的—、二、三倍。杨辉还进一步发展了唐宋相传的求一算法,总结出了“乘算加法五术”、“除算减法四术”。求一实际上就是通过倍、折、因将乘除数首位化为一,从而用加减代乘除。杨辉的“乘算加算加法五术”,即“加一位”、“加二位”、“重加”、“加隔位”、“连身加”。乘数为11至19的,用加一位;乘数为l0l至199的,用加二位法;乘数可分为两因数的积,且可用加一或加二时,称为重加;乘数为101至l09时,用隔位加;乘数为21至29、20l至299时,用连身加。例如,342×56的计算,用现代符号写出,便是:342×56=342×112十2=(34200十342×l2)十2=(34200十3420十342×2)十2。其“除算减法四木”即“减一位”、“减二位”、“重减”、“减隔位”,用法与乘算加法类似。

北宋初年出现的一种除法——增成法,在杨辉那里得到进一步的完善。增成法的优点在于用加倍补数的办法避免了试商,但对于位数较多的被除数,运算比较繁复,后人改进了它,总结出了“九归古括”,包含44句口诀。杨辉在其《乘除通变算宝》中引《九归新括》口诀32句,分为“归数求成十”、“归数自上加”,“半而为五计”三类。

客观上讲,杨辉不遗余力改进计算技术,大大加快了运算工具改革的步伐。随着筹算歌诀的盛行,运算速度大大加快,以至人们感觉到摆弄算筹跟不上口诀。在这样的背景下,算盘便应运而生了,及至元末,已经广为流行。

纵横图,即所谓的幻方。早在汉郑玄《易纬注》及《数术记遗》都记载有“九宫”即三阶幻方,千百年来一直被人披上神秘的色彩。杨辉创“纵横图”之名。在所著《续古摘奇算法》上卷作出了多种多样的图形。图ll是四阶纵横图;图12是百子图,即十阶纵横图。 其每行每列数之和为50—5(对角线数字之和不是505);图13是“聚八”图,杨辉按“二十四子作三十二子用”设子的这种幻方共有四圈,每圈数字之和为100; 图14是“攒九”图,用前33个自然数排列,达到“斜直周围各一百四十七”的效果。杨辉不仅给出了这些图的编造方法,而且对一些图的一般构造规律有所认识,打破了幻方的神秘性。这是世界上对幻方最早的系统研究和记录。自杨辉以后,明清两代中算家关于纵横图的研究相继不断。

杨辉的另一重要成果是垛积术。这是杨辉继沈括“隙积术”之后,关于高阶等差级数求和的研究。在《详解九章算法》和《算法通变本末》中记叙了若干二阶等差级数求和公式,其中除有一个即沈括的当童垛外,还有三角垛、四隅垛、方垛三式,用现今的记号表示就相当于下面三式:

上述三式可由沈括之刍童公式推出。

对数学重新分类也是杨辉的重要数学工作之一。杨辉在详解《九章算术》的基础上,专门增加了一卷“纂类”,将《九章》的方法和246个问题按其方法的性质重新分为乘除、分率、合率、互换、衰分、叠积、盈不足、方程、勾股九类。

杨辉不仅是一位著述甚丰的数学家,而且还是一位杰出的数学教育家。他一生致力于数学教育和数学普及,其著述有很多是为了数学教育和普及而写。《算法通变本末》中载有杨辉专门为初学者制订的“习算纲目”,它集中体现了杨辉的数学教育思想和方法。

杨辉的故事

说起杨辉的这一成就,还得从偶然的一件小事说起。

一天,台州府的地方官杨辉出外巡游,路上,前面铜锣开道,后面衙役殿后,中间,大轿抬起,好不威风。

迷人的春天慷慨地散布着芳香的气息,带来了生活的欢乐和幸福。杜鹃隐藏在芒果树的枝头。用它那圆润、甜蜜、动人心弦的鸣啭来唤醒人们的希望。

成群的画眉鸟像迎亲似的蹲在树的枝丫上,发出婉丽的啼声。楝树、花梨树和栗树都仿佛被自身的芬芳熏醉了。

杨辉撩起轿帘,看那杂花生树,飞鸟穿林,真乃春色怡人淡复浓,唤侣黄鹂弄晓风。更是一年好景,旖旎风光。

走着、走着,只见开道的镗锣停了下来,前面传来孩童的大声喊叫声,接着是衙役恶狠狠的训斥声。杨辉忙问怎么回事,差人来报:“孩童不让过,说等他把题目算完后才让走,要不就绕道。”

杨辉一看来了兴趣,连忙下轿抬步,来到前面。衙役急忙说:“是不是把这孩童哄走?”

杨辉摸着孩童头说:“为何不让本官从此处经过?”

孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了。”

“什么算式?”

“就是把1到9的数字分三行排列,不论直着加,横着加,还是斜着加,结果都是等于15。我们先生让下午一定要把这道题做好。我正算到关键之处。”

杨辉连忙蹲下身,仔细地看那孩童的算式,觉得这个数字,从哪见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼》书中所写的文章中提及的。

杨辉和孩童俩人连忙一起算了起来,直到天已过午,俩人才舒了一口气,结果出来了,他们又验算了一下,觉得结果全是15,这才站了起来。我们把算式摆出来:

(在左边的方块中,无论你横、竖、斜着加结果都是15。请试一下)

孩童望着这位慈祥和善的地方官说:“耽搁你的时间了,到我家吃饭吧!”

杨辉一听,说:“好,好,下午我也去见见你先生。”

孩童望着杨辉,泪眼汪汪,杨辉心想,这里肯定有什么蹊跷,温和地问道:“到底是怎么回事?”

孩童这才一五一十把原因道出:原来这孩童并未上学,家中穷得连饭都吃不饱,哪有钱读书。而这孩童给地主家放牛,每到学生上学时,他就偷偷地躲在学生的窗下偷听,今天上午先生出了这道题,这孩童用心自学,终于把它解决了。

杨辉听到此,感动万分,一个小小的孩童,竟有这番苦心,实在不易。便对孩童说:“这是10两银子,你拿回家去吧。下午你到学校去,我在那儿等你。”

下午,杨辉带着孩童找到先生,把这孩童的情况向先生说了一遍,又掏出银两,给孩童补了名额,孩童一家感激不尽。自此,这孩童方才有了真正的先生。

教书先生对杨辉的清廉为人非常敬佩,于是俩人谈论起数学。杨辉说道:“方才我和孩童做的那道题好像是《大戴礼》书中的?”

那先生笑着说:“是啊,《大戴礼》虽然是一部记载各种礼仪制度的文集,但其中也包含着一定的数学知识。方才你说的题目,就是我给孩子们出的数学游戏题。”

教书先生看到杨辉疑惑的神情,又说道:“南北朝的甄鸾在《数术记遗》一书中就写过:“九宫者,二四为肩,六八为足,左三右七,戴九履,一五居中央。”

杨辉默念一遍,发现他说的正与上午他和孩童摆的数字一样,便问道:“你可知道这个九宫图是如何造出来的?”

教书先生也不知出处。杨辉回到家中,反复琢磨,一有空闲就在桌上摆弄着这些数字,终于发现一条规律。

他把这条规律总结成四句话:九子斜排,上下对易,左右相更,四维挺出”。就是说:一开始将九个数字从大到小斜排三行,然后将9和1对换,左边7和右边3对换,最后将位于四角的4、2、6、8分别向外移动,排成纵横三行,就构成了九宫图。

下面我们演示一下:

(九子斜排)(上下对易,左右相更)(四维挺出)

按照类似的规律,杨辉又得到了“花16图”,就是从1到16的数字排列在四行四列的方格中,使每一横行、纵行、斜行四数之和均为34。读者诸君,不妨一试。

后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”、“六六图”、“衍数图”、“易数图”、“九九图”、“百子图”等许多类似的图。

杨辉把这些图总称为纵横图,并于1275年写进自己的数学著作《续古摘奇算法》一书中,并流传后世。

纵横图,也叫幻方,它要求把从1到n2个连续的自然数安置在n2个格子 理。

但长期以来,人们习惯于把它当作纯粹的数学游戏,没有给予应有重视。随着近代组合数学的发展,纵横图显示了越来越强大的生命力,在图论、组合分析、对策论、计算机科学等领域中,找到了用武之地。

杨辉可以说是世界上第一个给出了如此丰富的纵横图和讨论了其构成规律的数学家。

杨辉除此成就之外,还有一项重大贡献,就是“杨辉三角”。

有一次,杨辉得到一本《黄帝九章算法细草》,这是北宋数家贾宪写的。这里面有不少了不起的成就,如贾宪描画了一张图,叫作“开方作法本源图”。

图中的数字排列成一个大三角形,位于两腰上的数字均是1,其余数字则等于它上面两数字之和。

从第二行开始,这个大三角形的每行数字,都对应于一组二项展开式的系数,下面试举例说明:

在第三行中,1、3、3、1,这4个数字恰好是对应于(X+1)3=X3+3X2+3X+1;

再如第四行对应于(X+1)4=X4+4X3+6X2+4X+1。以此类推。

杨辉把贾宪的这张画忠实地记录下来,并保存在自己的《详解九章算术》一书中。

后来人们发现,这个大三角形不仅可以用来开方和解方程,而且与组合、高阶等差级数、内插法等数学知识都有密切关系。

在西方,直到16世纪才有人在一本书的封面上绘出类似的图形。法国数学家巴斯加在1654年的论文中详细地讨论了这个图形的性质,所以在西方又称“巴斯加三角”。

杨辉除上述成就外,还分别写了《日用算法》、《乘除通变本末》和《田亩比类乘除捷法》等书,这为后世的人们了解当时的数学面貌提供了极为重要的资料。

杨辉的几部著作极大地丰富了我国古代数学宝库,为数学科学的发展做出了卓越的贡献,他不愧为“宋元四大家”之一。

他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。

他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分,勾股等九类。

他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。

杨辉的数学著作甚多,他编著的数学书共五种二十一卷,在他的著作中收录了不少现已失传的古代数学著作中的算题和算法.

杨辉的数学研究与教育工作的重点是在计算技术方面.

扬辉对筹算乘除捷算法进行了总结和发展,创“纵横图”之名.继沈括“隙积术”之后,关于高阶等差级数的研究创“垛积术”.又将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为九类.

全国著名英语教学专家及人生指导专家国际人英语学习体系主要创始人

华夏英语志愿者协会秘书长

大连市翻译协会副秘书长

杨辉老师自1996年开始从事英语教学,尤其擅长口语教学。在他的课堂上,学生能够突破多年来不敢开口的习惯,练就一口发音纯正的流利英语。更重要的是,杨辉老师独特的个人魅力和授课方式让学员改变了内心深处的很多消极心态,在突破英语的同时,重新找到自我,从而充满自信的面对人生挑战。

在过去的十年,杨辉老师在全国举办了上千场英语学习法讲座,包括各地著名的大学、中学和企事业单位,每到一处都会掀起英语学习的热潮,直接影响了数十万英语学习者。杨辉老师带领的国际人教学研发机构一直是国内英语培训的领跑者。近年来,他们在国内首先将NLP、NAC等风靡全球的心理学成就用于英语教学,并将哈佛大学Personal Development and Change 理论运用于中国学生学业生涯指导,还把Robert Kiyosaki的财商理论引入培训投资,让更多学生认识到今天的学习是对明天的投资,更是让英语教学进入了一个全新的阶段。

杨辉老师担任着全国数十所大中学英语协会的名誉顾问,也直接培训了数万名学员,并为北京电视一台、中国糖烟酒进出口总公司、首都国际机场、海尔集团、惠普公司等数十家企业做过英语培训,改变了无数英语学习者的命运。也许,就在明天,他就会来到你的城市,和你一起改变你的英语和命运

杨辉老师著作:《英语是怎样炼成的》《发音是怎样炼成的》《口语是怎样炼成的》《英语思维是怎样炼成的》《Giant Step》《四六级考试点睛》《电影学英语系列丛书》

明代(1433-1483),字廷章,号退斋,明朝播州(今贵州遵义)人。明英宗正统十四年(公元1449年)袭播州宣慰使职。在职三十四年,修学延师,育才倡文。其时,播州周围数次爆发少数民族起义,杨辉输粟以助官军,领兵镇压,曾于景泰三年(公元1452年)和景泰六年(公元1455年)两次受明代宗"赐敕奖谕"和"颁赏",并曾奉诏入觐,陪庆成宴于奉天殿,得赐一品章服及金币诸物。杨辉谙于武事,广涉经史,长于草书。他于明成化年间修筑团溪白果坪的"雷水堰",以灌溉千亩白果庄田,至今效益不减当年。明宪宗成化十九年(公元1483年)卒。

福建省农科院科技情报所副所长1933年10月生,福建福安人。中共党员。研究员。1957年毕业于福建农学院。曾任福建省农科院科技情报所副所长,中国农业科技情报学会理事与情报研究和开发专业委员会委员,福建省农业信息学会副理事长。兼《福建省农科院学报》编委会副主任,《福建农业科技》社长,《台湾农业情况》编委,省农业志办公室副主任、主编,委省科技志编委,福建省自然科学研究人员高级职务评审委员会委员,省农业厅专家顾问组成员。主要贡献:在长期的实践工作中,先后撰写与发表科技论文、调研报告、科技文章、新闻报道共200多篇,主编专著1本,参加编著8本。主管和主编的《福建农业科技》1988年起先后获省科技情报成果一等奖、全国综合性中级农业优秀期刊、省和全国优秀科技期刊二等奖和三等奖、华东区优秀期刊三等奖。《台湾农业情况》1991年获省二届科技情报成果一等奖。从事软科学研究,为领导决策服务,先后有《台湾农业研究》等3项成果获部、省科技进步三等奖,l项获全国农业区划委员会、农业部优秀科技成果一等奖,2项获院科技成果二、三等奖。主编35万字《台湾农业》(福建科技出版社),长期以来,在科普创作园地上辛勤耕耘,收获颇丰。1992年被中国科普作家协会、中国农学会等授予为80年代以来科普编创成绩突出的农林科普作家称号。

湖南天然资源科技开发公司经理女,生于1956年6月,河南新乡人。助理研究员。毕业于中南大学。农工民主党党员。现任湖南天然资源科技开发公司经理。独立开发两种新药。发表有《银葛健脑茶》、《银杏叶胶囊》论文数篇。发明专利三项:9311162lX一种添加银杏和葛根的健脑茶;CNll35895A、CNll35892A两项专利已公开。均为治疗妇科疾病药物。银杏叶总有效成分提取工艺研究,高效皮肤渗透剂工艺研究,获省科技成果登记,均排名第五。

浙江大学教授1962年8月出生,浙江温州人,浙江大学材料与化学工程学院教授、博导。

个人简历

1983年7月毕业于浙江大学材料系,获学士学位;

1986年7月毕业于浙江大学材料系,获硕士学位;

1986年~ 至今浙江大学材料系从事教学科研;

1997年晋升为教授,任浙江大学无机非金属材料研究所副所长;

1998年评为博士生导师;

1997年-1999年,浙江大学教务处处长助理(分管混合班)

1999年-2002年,挂职担任浙江省科技厅高新技术产业化处副处长;

2003年~至今,浙江省“十五”纳米技术重大科技攻关及示范应用工程专家组组长,浙江大学纳米科学与技术中心副主任。

研究方向

电子陶瓷材料及其器件;

纳米材料制备、改性及产业化应用;

特种功能玻璃及陶瓷

学术兼职

中国硅酸盐学会理事;

中国硅酸盐学会陶瓷分会常务理事;

古陶瓷专业委员会副主任;

无机介质材料与器件专业委员会副主任;

浙江省硅酸盐学会副理事长。

论文成果

发表论文170余篇(SCI收录60余篇),申请发明专利9项,通过省级技术鉴定12项,出版了国家级重点教材《无机材料显微结构分析》(副主编)。

获奖情况

“纳米氧化铝改性官哥窑青瓷及其抗胎裂研究”获浙江省科技进步一等奖(第二完成人);

“纳米银系光活化抗菌陶瓷制品”获浙江省科技进步二等奖(第一完成人);

“无机纳米材料改性聚丙烯彩色塑料编织袋” 获浙江省科技进步二等奖(第一完成人);

霍英东教育基金会高校优秀青年教师奖;

中国硅酸盐学会科技青年奖;

全国第三届建材行业高等学校优秀教材二等奖;

国家教委科技进步(甲类)三等奖。

浙江省“151人才工程”第一层次人员;

浙江省高等学校优秀青年教师;

浙江省优秀科技工作者。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有