王朝百科
分享
 
 
 

对偶理论

王朝百科·作者佚名  2010-09-26  
宽屏版  字体: |||超大  

简介对偶理论: Duality theory :

对偶理论
对偶几何

研究线性规划中原始问题与对偶问题之间关系的理论。[1]

对偶理论属自动控制与系统工程范畴

对偶理论主要研究经济学中的相互确定关系,涉及到经济学的诸多方面。产出与成本的对偶、效用与支出的对偶,是经济学中典型的对偶关系。经济系统中还有许多其他这样的对偶关系。

利用对偶性来进行经济分析的这种方法,就叫做对偶方法。

每一个线性规划问题都存在一个与其对偶的问题,在求出一个问题解的同时,也给出了另一个问题的解。

对偶理论 1947年由美籍匈牙利数学家Jvon偌依曼提出创立。

发展简史在线性规划早期发展中最重要的发现就是对偶问题,即每一个线性规划问题(称为原始问题)都有一个与它对应的对偶线性规划问题(称为对偶问题)。1928年美籍匈牙利数学家 J.von诺伊曼在研究对策论时

对偶理论

已发现线性规划与对策论之间存在着密切的联系。两人零和对策可表达成线性规划的原始问题和对偶问题。他于1947年提出对偶理论。1951年G.B.丹齐克引用对偶理论求解线性规划的运输问题,研究出确定检验数的位势法原理。1954年C.莱姆基提出对偶单纯形法,成为管理决策中进行灵敏度分析的重要工具。对偶理论有许多重要应用:在原始的和对偶的两个线性规划中求解任何一个规划时,会自动地给出另一个规划的最优解;当对偶问题比原始问题有较少约束时,求解对偶规划比求解原始规划要方便得多;对偶规划中的变量就是影子价格。

对偶问题 每一个线性规划问题都伴随有另一个线性规划问题,称为对偶问题。原来的线性规划问题则称为原始线性规划问题,简称原始问题。对偶问题有许多重要的特征,它的变量能提供关于原始问题最优解的许多重要资料,有助于原始问题的求解和分析。对偶问题与原始问题之间存在着下列关系:①目标函数对原始问题是极大化,对对偶问题则是极小化。②原始问题目标函数中的收益系数是对偶问题约束不等式中的右端常数,而原始问题约束不等式中的右端常数则是对偶问题中目标函数的收益系数。③原始问题和对偶问题的约束不等式的符号方向相反。④原始问题约束不等式系数矩阵转置后即为对偶问题的约束不等式的系数矩阵。⑤原始问题的约束方程数对应于对偶问题的变量数,而原始问题的变量数对应于对偶问题的约束方程数。⑥对偶问题的对偶问题是原始问题,这一性质被称为原始和对偶问题的对称性。

基本定理原始问题和对偶问题的标准形式如下:

原始问题对偶问题

maxz=cxminw=yb

s.t.Ax≤bs.t.yA≥c

x≥0y≥0

式中max表示求极大值,min表示求极小值,s.t.表示“约束条件为”;z为原始问题的目标函数,w为对偶问题的目标函数;x为原始问题的决策变量列向量(n×1),y为对偶问题的决策变量行向量(1×m);A为原始问题的系数矩阵(m×n),b为原始问题的右端常数列向量(m×1),c为原始问题的目标函数系数行向量(1×n)。在原始问题与对偶问题之间存在着一系列深刻的关系,业已得到严格数学证明的有如下一些定理。弱对偶定理若上述原始问题和对偶问题分别有可行解x0和y0,则y0b≥cx0。这个定理表明极大化问题任一可行解的目标函数值总是不大于它的对偶问题的任一可行解的目标函数值。

强对偶定理 若上述原始问题和对偶问题都可行,则它们分别有最优解x*和y*,且cx*=y*b。最优准则定理若上述原始问题和对偶问题分别有可行解x0和y0,且两者的目标函数值相等,即y0b=cx0,则两个可行解分别为对应线性规划的最优解。互补松弛定理若上述原始问题和对偶问题分别有可行解x0和y0,且u0和v0分别为它们的松弛变量,则当且仅当v0x0+u0y0时,x0和y0分别为它们的最优解。松弛定理若上述原始问题和对偶问题分别有可行解x0和y0,且u0和v0分别为它们的松弛变量,则当且仅当v0x0=0 和u0y0=0时, x0和y0分别为它们的最优解。v0x0=0和u0y0=0这两个等式称为互补松弛条件。

对称对偶线性规划 具有对称形式的线性规划的特点是:

①全部约束条件均为不等式,对极大化问题为≤,对极小化问题为≥。

②全部变量均为非负。

列出对称对偶线性规划的步骤是:

①规定非负的对偶变量,变量数等于原始问题的约束方程数。

②把原始问题的目标函数系数作为对偶问题约束不等式的右端常数。

③把原始问题约束不等式的右端常数作为对偶问题的目标函数系数。

④把原始问题的系数矩阵转置后作为对偶问题的系数矩阵。

⑤把原始问题约束条件中的不等号反向作为对偶问题约束条件的不等号。

⑥将原始问题目标函数取极大化改成对偶问题目标函数取极小化。

非对称对偶线性规划 有时线性规划并不以对称方式出现,如约束条件并不都是同向不等式,变量可以是非正的或没有符号约束。

列写非对称对偶线性规划可参照原始-对偶表(见表)按下列步骤进行:

①规定对偶变量,变量个数等于原始问题约束不等式数。

②把原始问题的目标函数系数作为对偶问题约束不等式的右端常数。

③把原始问题约束不等式的右端常数作为对偶问题的目标函数系数。

④把原始问题的系数矩阵转置后作为对偶问题的系数矩阵。

⑤根据原始问题的约束不等式情况,确定对偶变量的符号约束。

⑥根据原始问题决策变量的符号约束,确定对偶问题约束不等式的符号方向。

对偶问题的最优解 从原始问题的最终单纯形表中(最优单纯形算子)可直接得到对偶问题的最优解。原始问题中松弛变量的检验数对应着对偶问题的解(符号相反)。在用单纯形法时每一步迭代可得到原始问题的可行解x0和对偶问题的补充解y0,且cx0=y0b,若x0不是原始问题的最优解,y0就不是对偶问题的可行解。最后一步迭代得到原始问题的最优解x*和对偶问题的补充最优解y*,且cx*=y*b。y*是原始问题的影子价格。

[2]

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有