轴矢量

王朝百科·作者佚名  2010-09-28  
宽屏版  字体: |||超大  

宇称为正的矢量

经典物理中的轴矢量矢量作为有方向的量,在坐标转动时,分量随坐标作相应变化。正常的矢量在宇称变换(空间完全反演)下,大小不变,方向变得相反。轴矢量在宇称变换下方向不改变。最常见的轴矢量,是角速度和角动量。他们与正常矢不同的一个明显例子如下。一个垂直镜子的物体,在镜子里的像方向与自己相反;而一个转轴与镜子垂直的螺旋,在镜子里的像的旋转方向跟实物的旋转方向一样。

粒子物理里的轴矢量在粒子物理里,既有矢量性质的流,又有轴矢量性质的流。特别重要的一个例子是弱相互作用相关的流,正好是矢量流和轴矢流之和。这样的流由于既含有宇称为正的部分又含有宇称为负的部分,因此总的宇称是不守恒的。这正是在弱相互作用下宇称不守恒的根源。虽然流守恒的特性上,轴矢量流和矢量流并没有什么不一样,但是在自然界中,矢量流是更为根本的。不仅除弱相互作用外的其他相互作用都是与矢量流相关的,而且在量子的层面上,轴矢流有矢量流完全没有的性质--量子反常。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有