内插值法
插值法是函数逼近的一种重要方法,是数值计算的基本课题。本节只讨论具有唯一插值函数的多项式插值和分段多项式插值,对其中的多项式插值主要讨论n次多项式插值的方法,即给定n+1各点处的函数值后,怎样构造一个n次插值多项式的方法。虽然理论上可以用解方程组(2)(那里m=n)得到所求插值多项式,但遗憾的是方程组(2)当n较大时往往是严重是病态的。故不能用解方程组的方法获得插值多项式。本节介绍的内容有:lagrange插值,newton插值,hermite插值,分段多项式插值及样条插值。
插值法是函数逼近的一种重要方法,是数值计算的基本课题。本节只讨论具有唯一插值函数的多项式插值和分段多项式插值,对其中的多项式插值主要讨论n次多项式插值的方法,即给定n+1各点处的函数值后,怎样构造一个n次插值多项式的方法。虽然理论上可以用解方程组(2)(那里m=n)得到所求插值多项式,但遗憾的是方程组(2)当n较大时往往是严重是病态的。故不能用解方程组的方法获得插值多项式。本节介绍的内容有:lagrange插值,newton插值,hermite插值,分段多项式插值及样条插值。