复变函数及应用

王朝百科·作者佚名  2010-12-08  
宽屏版  字体: |||超大  

图书信息书 名: 复变函数及应用(英文版)

复变函数及应用

作者:(美)布朗

出版社:机械工业出版社

出版时间: 2009-3-1

ISBN: 9787111253631

开本: 16开

定价: 65.00元

内容简介本书初版于20世纪40年代,是经典的本科数学教材之一,对复变函数的教学影响深远,被美国加州理工学院、加州大学伯克利分校、佐治亚理工学院、普度大学、达特茅斯学院、南加州大学等众多名校采用。

本书阐述了复变函数的理论及应用,还介绍了留数及保形映射理论在物理、流体及热传导等边值问题中的应用。

新版对原有内容进行了重新组织,增加了更现代的示例和应用,更加方便教学。

图书目录Preface

1 Complex Numbers

Sums and Products

Basic Algebraic Properties

Further Properties

Vectors and Moduli

Complex Conjugates

Exponential Form

Products and Powers in Exponential Form

Arguments of Products and Quotients

Roots of Complex Numbers

Examples

Regions in the Complex Plane

2 Analytic Functions

Functions of a Complex Variable

Mappings

Mappings by the Exponential Function

Limits

Theorems on Limits

Limits Involving the Point at Infinity

Continuity

Derivatives

Differentiation Formulas

Cauchy-Riemann Equations

Sufficient Conditions for Differentiability

Polar Coordinates

Analytic Functions

Examples

Harmonic Functions

Uniquely Determined Analytic Functions

Reflection Principle

3 Elementary Functions

The Exponential Function

The Logarithmic Function

Branches and Derivatives of Logarithms

Some Identities Involving Logarithms

Complex Exponents

Trigonometric Functions

Hyperbolic Functions

Inverse Trigonometric and Hyperbolic Functions

4 Integrals

Derivatives of Functions w(t)

Definite Integrals of Functions w(t)

Contours

Contour Integrals

Some Examples

Examples with Branch Cuts

Upper Bounds for Moduli of Contour Integrals

Antiderivatives

Proof of the Theorem

Cauchy-Goursat Theorem

Proof of-the Theorem

5 Series

6 Residues and Poles

7 Applications of Residues

8 Mapping by Elementary Functions

9 Conformal Mapping

10 Applications of Conformal Mapping

11 The Schwarz-Chrstoffer Transformation

12 Integral Formulas of the Poisson Type

Appendixes

Index

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有