非线性控制理论
人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,对于非线性系统来说,除极少数情况外,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。
但是,随着科学技术的不断发展,人们对实际生产过程的分析要求日益精密,各种较为精确的分析和科学实验的结果表明,任何一个实际的物理系统都是非线性的。所谓线性只是对非线性的一种简化或近似,或者说是非线性的一种特例。例如一个最简单的大家都熟悉的例子就是欧姆定理。欧姆定理的数学表达式为U=IR。此式说明,电阻两端的电压U是和通过它的电流I成正比,这是一种简单的线性关系。但是,即使对于这样一个最简单的单电阻系统来说,其动态特性,严格说来也是非线性的。因为当电流通过电阻以后就会产生热量,温度就要升高,而阻值随温度的升高就要发生变化。欧姆定理就不再是简单的线性关系了,而是如下式所示的一种非线性关系:
式中,R0是0℃时的电阻数值,mc是电阻的热容量,α为电阻的温度系数,t为电流通过电阻的时间。动力学中的虎克定理、热力学中的第一定律以及气体的内摩擦力等等也都有类似的情况。
对非线性控制系统的研究,到本世纪四十年代,已取得一些明显的进展。主要的分析方法有:相平面法、李亚普诺夫法和描述函数法等。这些方法都已经被广泛用来解决实际的非线性系统问题。但是这些方法都有一定的局限性,都不能成为分析非线性系统的通用方法。例如,用相平面法虽然能够获得系统的全部特征,如稳定性、过渡过程等,但大于三阶的系统无法应用。李亚普诺夫法则仅限于分析系统的绝对稳定性问题,而且要求非线性元件的特性满足一定条件。虽然这些年来,国内外有不少学者一直在这方面进行研究,也研究出一些新的方法,如频率域的波波夫判据,广义圆判据,输入输出稳定性理论等。但总的来说,非线性控制系统理论目前仍处于发展阶段,远非完善,很多问题都还有待研究解决,领域十分宽广。
非线性控制理论作为很有前途的控制理论,将成为二十一世纪的控制理论的主旋律,将为我们人类社会提供更先进的控制系统,使自动化水平有更大的飞越。
控制系统有线性和非线性之分。严格地说,理想的线性系统在实际中并不存在。在分析非线性系统时,人们首先会想到使用在工作点附近小范围内线性化的方法,当实际系统的非线性程度不严重时,采用线性方法去进行研究具有实际意义。但是,如果实际系统的非线性程度比较严重,则不能采用在工作点附近小范围内线性化的方法去进行研究,否则会产生较大的误差,甚至会导致错误的结论。这时应采用非线性系统的研究方法进行研究。
非线性系统的分析方法大致可分为两类。运用相平面法或数字计算机仿真可以求得非线性系统的精确解,进而分析非线性系统的性能,但是相平面法只适用于一阶、二阶系统;建立在描述函数基础上的谐波平衡法可以对非线性系统作出定性分析,是分析非线性系统的简便而实用的方法,尤其在解决工程实际问题上,不须求得精确解时更为有效。
1.实际系统中的非线性因素
实际的物理系统,由于其组成元件总是或多或少地带有非线性特性,可以说都是非线性系统。例如,在一些常见的测量装置中,当输入信号在零值附近的某一小范围之内时,没有输出,只有当输入信号大于此范围时,才有输出,即输入输出特性中总有一个不灵敏区(也称死区),如图1(a)所示;放大元件的输入信号在一定范围内时,输入输出呈线性关系,当输入信号超过一定范围时,放大元件就会出现饱和现象,如图1(b)所示;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,其输入输出特性为间隙特性,如图1(c)所示;有时为了改善系统的性能或者简化系统的结构,还常常在系统中引入非线性部件或者更复杂的非线性控制器。通常,在自动控制系统中,最简单和最普遍的就是继电特性,如图1(d)所示。
y y y y
M
-h -mh
0 x 0 x 0 x 0 mh h x
-M
(a) (b) (c) (d)
图1 一些典型的非线性特性
以上情况说明,非线性特性在实际中是普遍存在的,只要系统中包含一个或一个以上具有非线性特性的元件,就称其为非线性系统。所以,严格地说,实际的的控制系统都是非线性系统。所谓线性系统仅仅是实际系统忽略了非线性因素后的理想模型。当实际系统的非线性程度不严重时,在某一范围内或某些条件下可以近似地视为线性系统,这时采用线性方法去进行研究具有实际意义,分析的结果符合实际系统的情况。但是,如果实际系统的非线性程度比较严重,则不能采用线性方法去进行研究,否则会产生较大的误差,甚至会导致错误的结论,故有必要对非线性系统作专门的研究。
2. 常见非线性特性对系统运动的影响
从非线性环节的输入与输出之间存在的函数关系划分,非线性特性可分为单值函数与多值函数两类。例如死区特性、饱和特性及理想继电特性属于输入与输出间为单值函数关系的非线性特性。间隙特性和一般继电特性则属于输入与输出之间为多值函数关系的非线性特性。
在实际控制系统中,最常见的非线性特性有死区特性、饱和特性、间隙特性和继电特性等。在多数情况下,这些非线性特性都会对系统正常工作带来不利影响。下面从物理概念上对包含这些非线性特性的系统进行一些分析,有时为了说明问题,仍运用线性系统的某些概念和方法。虽然分析不够严谨,但便于了解,而且所得出的一些概念和结论对于从事实际系统的调试工作是具有参考价值的。
(1):死区 死区特性如图1(a)所示。对于线性无静差系统,系统进入稳态时,稳态误差为零。若控制器中包含有死区特性,则系统进入稳态时,稳态误差可能为死区范围内的某一值,因此死区对系统最直接的影响是造成稳态误差。当输入信号是斜坡函数时,死区的存在会造成系统输出量在时间上的滞后,从而降低了系统的跟踪速度。摩擦死区特性可能造成运动系统的低速不均匀;另一方面,死区的存在会造成系统等效开环增益的下降,减弱过渡过程的振荡性,从而可提高系统的稳定性。死区也能滤除在输入端作小幅度振荡的干扰信号,提高系统的抗干扰能力。
-
测量元件 放大元件 执行元件
图2 包含死区特性的非线性系统
在图2所示的非线性系统中,K1、K2、K3分别为测量元件、放大元件和执行元件的传递系数,Δ1、Δ2、Δ3分别为它们的死区。若把放大元件和执行元件的死区折算到测量元件的位置(此时放大元件和执行元件无死区),则有下式成立:
(1)
显而易见,处于系统前向通路最前面的测量元件,其死区所造成的影响最大,而放大元件和执行元件死区的不良影响可以通过提高该元件前级的传递系数来减小。
(2):饱和 饱和特性如图1(b)所示。饱和特性将使系统在大信号作用之下的等效增益降低,一般地讲,等效增益降低,会使系统超调量下降,振荡性减弱,稳态误差增大。处于深度饱和的控制器对误差信号的变化失去反应,从而使系统丧失闭环控制作用。在一些系统中经常利用饱和特性作信号限幅,限制某些物理参量,保证系统安全合理地工作。
若线性系统为振荡发散,当加入饱和限制后,系统就会出现自持振荡的现象。这是因为随着输出量幅值的增加,系统的等效增益在下降,系统的运动有收敛的趋势;而当输出量幅值减小时,等效增益增加,系统的运动有发散的趋势,故系统最终应维持等幅振荡,出现自持振荡现象。
(3):间隙 又称回环,间隙特性如图1(c)所示。在齿轮传动中,由于间隙存在,当主动齿轮方向改变时,从动轮保持原位不动,直到间隙消失后才改变转动方向。铁磁元件中的磁滞现象也是一种回环特性。间隙特性对系统性能的影响:一是增大了系统的稳态误差,降低了控制精度,这相当于死区的影响;二是因为间隙特性使系统频率响应的相角迟后增大,从而使系统过渡过程的振荡加剧,甚至使系统变为不稳定。
(4):继电特性 继电特性如图1(d)所示,其特性中包含了死区、回环及饱和特性。当h=0时,称为理想继电特性。
理想继电特性串入系统,在小偏差时开环增益大,系统的运动一般呈发散性质;而在大偏差时开环增益很小,系统具有收敛性质。故理想继电控制系统最终多半处于自持振荡工作状态。
继电特性能够使被控制的执行装置在最大输入信号下工作,可以充分发挥其调节能力,故有可能利用继电特性实现快速跟踪。
至于带死区的继电特性,将会增加系统的定位误差,而对其它动态性能的影响,类似于死区、饱和非线性特性的综合效果。
以上只是对系统前向通道中包含某个典型非线性特性的情况进行了直观的讨论,所得结论为一般情况下的定性结论,这些结论对于从事实际系统的调试工作是具有参考价值的。
3. 非线性系统特征
描述线性系统运动状态的数学模型是线性微分方程,其重要特征是可以应用叠加原理;描述非线性系统运动状态的数学模型是非线性微分方程,不能应用叠加原理。由于两类系统的根本区别,它们的运动规律是很不相同的。现将非线性系统所具有的主要运动特点归纳如下:
(1):稳定性 线性系统的稳定性只取决于系统的结构和参数,而与外作用和初始条件无关。因此,讨论线性系统的稳定性时,可不考虑外作用和初始条件。只要线性系统是稳定的,就可以断言,这个系统所有可能的运动都是稳定的。
对于非线性系统,不存在系统是否稳定的笼统概念,必须针对系统某一具体的运动状态,才能讨论其是否稳定的问题。例如一个非线性系统,其非线性微分方程为:
(2)
设t=0时,系统的初始条件为x0,可以求得上述微分方程的解为:
(3)
x
1
0 t
图3非线性系统的时间响应
不同初始条件下的时间响应曲线如图3所示。实际上,根据式( 2),可以判断x(t)的变化情况,粗略地看,当x0>1时,dx/dt>0,x(t)随时间的增长而增大;当0<x0<1时,dx/dt<0,x(t)随时间的增长而收敛到零;当x0<0时,dx/dt>0,x(t)随时间的增长而增大,最终趋于零。
在式 2中,若令dx/dt=0,可以求出系统的两个平衡状态:x=0和x=1,x=0这个平衡状态是稳定的,因为它对x0<1的扰动具有恢复原状态的能力;而x=1这个平衡状态是不稳定的,稍加扰动不是收敛到零,就是发散到无穷,不可能再回到这个平衡状态。
由此可见,非线性系统可能存在多个平衡状态,其中某些平衡状态是稳定的,另一些平衡状态是不稳定的。初始条件不同,系统的运动可能趋于不同的平衡状态,运动的稳定性就不同。所以说,非线性系统的稳定性不仅与系统的结构和参数有关,而且与运动的初始条件、输入信号有直接关系。
C(t) 线性系统 非线性系统
R2
R1
0 t
图4不同大小输入信号的响应曲线
(2):时间响应 线性系统时间响应的一些基本特征(如振荡性和收敛性)与输入信号的大小及初始条件无关。图4中的虚线表明,对于线性系统,阶跃输入信号的大小只影响响应的幅值,而不会改变响应曲线的形状。非线性系统的时间响应与输入信号的大小和初始条件有关。图4中的实线表明,对于非线性系统,随着阶跃输入信号的大小不同,响应曲线的幅值和形状会产生显著变化,从而使输出具有多种不同的形式。同是振荡收敛的,但振荡频率和调节时间均不相同,还可能出现非周期形式,甚至出现发散的情况。这是由于非线性特性不遵守叠加原理的结果。
(3):自持振荡 线性定常系统只有在临界稳定的情况下,才能产生等幅振荡。需要说明的是,这种振荡是靠参数的配合达到的,因而实际上是很难观察到的,而且等幅振荡的幅值及相角与初始条件有关,一旦受到扰动,原来的运动便不能维持,所以说线性系统中的等幅振荡不具有稳定性。
有些非线性系统在没有外界周期变化信号的作用下,系统中就能产生具有固定振幅和频率的稳定周期运动。如振荡发散的线性系统中引入饱和特性时就会产生等幅振荡,这种固定振幅和频率的稳定周期运动称为自持振荡,其振幅和频率由系统本身的特性所决定。自持振荡具有一定的稳定性,当受到某种扰动之后,只要扰动的振幅在一定的范围之内,这种振荡状态仍能恢复。在多数情况下,不希望系统有自持振荡。长时间大幅度的振荡会造成机械磨损、能量消耗,并带来控制误差。但是有时又故意引入高频小幅度的颤振,来克服间隙、摩擦等非线性因素给系统带来的不利影响。因此必须对自持振荡产生的条件、自持振荡振幅和频率的确定,以及自持振荡的抑制等问题进行研究。所以说自持振荡是非线性系统一个十分重要的特征,也是研究非线性系统的一个重要内容。
Ac
0 ω1 ω2 ω
图5 非线性系统的频率响应曲线
(4):对正弦信号的响应 线性系统当输入某一恒定幅值和不同频率ω的正弦信号时,稳态输出的幅值Ac是频率ω的单值连续函数。对于非线性系统输出的幅值Ac与ω的关系可能会发生跳跃谐振和多值响应,其特性如图5所示。当ω增加时,系统输出的幅值从1点逐渐变化到2点,然后会从2点突跳到3点;而当ω减小时,系统输出的幅值会从4点变化到5点,然后会从5点突跳到6点,这种振幅随频率的改变出现突跳的现象称为跳跃谐振。在ω1到ω2之间的每一个频率,都对应着三个振幅值,不过2点到5点之间对应的振荡是不稳定的,因此一个频率对应了两个稳定的振荡,这种现象称为多值响应。产生跳跃谐振的原因是系统中滞环特性的多值特点造成的。
(5):非线性系统的畸变现象 线性系统在正弦信号作用下的稳态输出是与输入同频率的正弦信号;非线性系统在正弦信号作用下的稳态输出不是正弦信号,它可能包含有倍频和分频等各种谐波分量,从而使系统输出产生非线性畸变。
在非线性系统中还会出现一些其它的怪异现象,在此不再赘述。
4.非线性系统的分析方法
对于非线性系统,建立数学模型的问题要比线性系统困难得多,至于解非线性微分方程,用其解来分析非线性系统的性能,就更加困难了。这是因为除了极特殊的情况外,多数非线性微分方程无法直接求得解析解。所以到目前为止,还没有一个成熟、通用的方法可以用来分析和设计各种不同的非线性系统,目前研究非线性系统常用的工程近似方法有:
(1):相平面法 相平面法是时域分析法在非线性系统中的推广应用,通过在相平面上绘制相轨迹,可以求出微分方程在任何初始条件下的解,所得结果比较精确和全面。但对于高于二阶的系统,需要讨论变量空间中的曲面结构,从而大大增加了工程使用的难度。故相平面法仅适用于一、二阶非线性系统的分析。
(2):描述函数法 描述函数法是一种频域的分析方法,它是线性理论中的频率法在非线性系统中的推广应用,其实质是应用谐波线性化的方法,将非线性元件的特性线性化,然后用频率法的一些结论来研究非线性系统。这种方法不受系统阶次的限制,且所得结果也比较符合实际,故得到了广泛应用。
(3):计算机求解法 用模拟计算机或数字计算机直接求解非线性微分方程,对于分析和设计复杂的非线性系统,几乎是唯一有效的方法。随着计算机的广泛应用,这种方法定会有更大的发展。
应当指出,这些方法主要是解决非线性系统的“分析”问题,而且是以稳定性问题为中心展开的,非线性系统“综合”方法的研究远不如稳定性问题的成果,可以说到目前为止还没有一种简单而实用的综合方法,可以用来设计任意的非线性控制系统。