阿基米德三角形

王朝百科·作者佚名  2011-03-23  
宽屏版  字体: |||超大  

过任意抛物线焦点F作抛物线的弦,与抛物线交与A、B两点,分别过A、B两点做抛物线的切线l1,l2相交于P点。那么△PAB称作阿基米德三角型。该三角形满足以下特性:

1、P点必在抛物线的准线上

2、△PAB为直角三角型,且角P为直角

3、PF⊥AB(即符合射影定理)

另外,对于任意圆锥曲线(椭圆,双曲线、抛物线)均有如下特性

1、过某一焦点F做弦与曲线交于A、B两点分别过A、B两点做圆锥曲线的切线l1,l2相交于P点。那么,P必在该焦点所对应的准线上。

2、过某准线与X轴的焦点Q做弦与曲线交于A、B两点分别过A、B两点做圆锥曲线的切线l1,l2相交于P点。那么,P必在一条垂直于X轴的直线上,且该直线过对应的焦点。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有