王朝百科
分享
 
 
 

傅里叶级数

王朝百科·作者佚名  2009-12-07  
宽屏版  字体: |||超大  

傅里叶级数

Fourier series

一种特殊的三角级数。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯 - 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。

============================================================================================================

傅里叶级数的公式

给定一个周期为T的函数x(t),那么它可以表示为无穷级数:

<math>x(t)=sum _{k=-infty}^{+infty}a_kcdot e^{jk(frac{2pi}{T})t}</math>(j为虚数单位)(1)

其中,<math>a_k</math>可以按下式计算:

<math>a_k=frac{1}{T}int_{T}x(t)cdot e^{-jk(frac{2pi}{T})t}</math>(2)

注意到<math>f_k(t)=e^{jk(frac{2pi}{T})t}</math>是周期为T的函数,故k 取不同值时的周期信号具有谐波关系(即它们都具有一个共同周期T)。k=0时,(1)式中对应的这一项称为直流分量,<math>k=pm 1</math>时具有基波频率<math>omega_0=frac{2pi}{T}</math>,称为一次谐波或基波,类似的有二次谐波,三次谐波等等。

傅里叶级数的收敛性

傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:

在任何周期内,x(t)须绝对可积;

在任一有限区间中,x(t)只能取有限个最大值或最小值;

在任何有限区间上,x(t)只能有有限个第一类间断点。

吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和X(t),那么X(t)在这些点上会有起伏。一个简单的例子是方波信号。

三角函数族的正交性

所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线形无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线形表出。三角函数族的正交性用公式表示出来就是:

<math>int _{0}^{2pi}sin (nx)cos (mx) ,dx=0;</math>

<math>int _{0}^{2pi}sin (mx)sin (mx) ,dx=0;(m

e n)</math>

<math>int _{0}^{2pi}cos (mx)cos (mx) ,dx=0;(m

e n)</math>

<math>int _{0}^{2pi}sin (nx)sin (nx) ,dx=pi;</math>

<math>int _{0}^{2pi}cos (nx)cos (nx) ,dx=pi;</math>

奇函数和偶函数

奇函数<math>f_o(x)</math>可以表示为正弦级数,而偶函数<math>f_e(x)</math>则可以表示成余弦级数:

<math>f_o(x) = sum _{-infty}^{+infty}b_k sin(kx);</math>

<math>f_e(x) = frac{a_0}{2}+sum _{-infty}^{+infty}a_kcos(kx);</math> 只要注意到欧拉公式: <math>e^{jheta}= sin heta+jcos heta</math>,这些公式便可以很容易从上面傅里叶级数的公式中导出。

广义傅里叶级数

任何正交函数系<math>{ phi(x)}</math>,如果定义在[a,b]上的函数f(x)只具有有限个第一类间断点,那么如果f(x)满足封闭性方程:

<math>int _{a}^{b}f^2(x),dx=sum _{k=1}^{infty}c^{2}_{k}</math> (4),

那么级数<math>sum _{k=1}^{infty} c_kphi _k(x)</math> (5) 必然收敛于f(x),其中:

<math>c_n=int _{a}^{b}f(x)phi_n(x),dx</math> (6)。

事实上,无论(5)时是否收敛,我们总有:

<math>int _{a}^{b}f^2(x),dx ge sum _{k=1}^{infty}c^{2}_{k}</math>成立,这称作贝塞尔(Bessel)不等式。此外,式(6)是很容易由正交性推出的,因为对于任意的单位正交基<math>{e_i}^{N}_{i=1}</math>,向量x在<math>e_i</math>上的投影总为<math><x,e_i></math> 。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格&#8203;十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有