王朝百科
分享
 
 
 

群与格引论:有限群与正定有理格

王朝百科·作者佚名  2012-03-01  
宽屏版  字体: |||超大  

图书信息书 名: 群与格引

论:有限群与正定有理格

作者:格里斯(RobertL.Griess)

出版社:高等教育出版社

出版时间: 2010年5月1日

ISBN: 9787040292053

开本: 16开

定价: 58.00元

内容简介《群与格引论:有限群与正定有理格(国内英文版)》内容简介:The launch of this Advanced Lectures in Mathematics series is aimed at keepingmathematicians informed of the latest developments in mathematics, as well asto aid in the learning of new mathematical topics by students all over the world.

Each volume consists of either an expository monograph or a collection of signifi-cant introductions to important topics. This series emphasizes the history andsources of motivation for the topics under discussion, and also gives an overviewof the current status of research in each particular field. These volumes are thefirst source to which people will turn in order to learn new subjects and to dis-cover the latest results of many cutting-edge fields in mathematics.

作者简介作者:(美国)格里斯(Robert L.Griess)

图书目录1 Introduction

1.1 Outline of the book

1.2 Suggestions for further reading

1.3 Notations, background, conventions

2 Bilinear Forms, Quadratic Forms and Their Isometry Groups.

2.1 Standard results on quadratic forms and reflections

2.1.1 Principal ideal domains (PIDs)

2.2 Linear algebra

2.2.1 Interpretation of nonsingularity

2.2.2 Extension of scalars

2.2.3 Cyclicity of the values of a rational bilinea.r form

2.2.4 Gram matrix

2.3 Discriminant group

2.4 Relations between a lattice and sublattices

2.5 Involutions on quadratic spaces

2.6 Standard results on quadratic forms and reflections, II

2.6.1 Involutions on lattices

2.7 Scaled isometries: norm doublers and triplers

3 General Results on Finite Groups and Invariant Lattices

3.1 Discreteness of rational lattices

3.2 Finiteness of the isometry group

3.3 Construction of a G-invariant bilinear form

3.4 Semidirect products and wreath products

3.5 Orthogonal decomposition of lattices

4 Root Lattices of Types A, D, E

4.1 Background from Lie theory

4.2 Root lattices, their duals and their isometry groups

4.2.1 Definition of the AN lattices

4.2.2 Definition of the Dn lattices

4.2.3 Definition of the En lattices

4.2.4 Analysis of the A,n root lattices

4.2.5 Analysis of the Dn root lattices

4.2.6 More on the isometry groups of type Dn

4.2.7 Analysis of the En root lattices

5 Hermite and Minkowski Functions

5.1 Small ranks and small determinants

5.1.1 Table for the Minkowski and Hermite functions

5.1.2 Classifications of small rank, small determinant lattices

5.2 Uniqueness of the lattices E6, E7 and Es

5.3 More small ranks and small determinants

6 Constructions of Lattices by Use of Codes

6.1 Definitions and basic results

6.1.1 A construction of the Es-lattice with the binary [8, 4, 4] cod

6.1.2 A construction of the Es-lattice with the ternary [4, 2, 3] cod

6.2 The proofs

6.2.1 About power sets, boolean sums and quadratic forms

6.2.2 Uniqueness of the binary [8, 4, 4] code

6.2.3 Reed-Muller codes

6.2.4 Uniqueness of the tetracode

6.2.5 The automorphism group of the tetracode

6.2.6 Another characterization of [8, 4, 4]2

6.2.7 Uniqueness of the Es-lattice implies uniqueness of the binary [8, 4, 4] code

6.3 Codes over F7 and a (mod 7)-construction of Es

6.3.1 The A6-1attice

7 Group Theory and Representations

7.1 Finite groups

7.2 Extraspecial p-groups

7.2.1 Extraspecial groups and central products

7.2.2 A normal form in an extraspecial group

7.2.3 A classification of extraspecial groups

7.2.4 An application to automorphism groups of extraspecial groups

7.3 Group representations

7.3.1 Representations of extraspecial p-groups

7.3.2 Construction of the BRW groups

7.3.3 Tensor products

7.4 Representation of the BRW group G

7.4.1 BRW groups as group extensions

8 Overview of the Barnes-Wall Lattices

8.1 Some properties of the series

8.2 Commutator density

8.2.1 Equivalence of 2/4-, 3/4-generation and commutator density for Dihs

8.2.2 Extraspecial groups and commutator density

9 Construction and Properties of the Barnes-Wall Lattices

9.1 The Barnes-Wall series and their minimal vectors

9.2 Uniqueness for the BW lattices

9.3 Properties of the BRW groups

9.4 Applications to coding theory

9.5 More about minimum vectors

10 Even unimodular lattices in small dimensions

10.1 Classifications of even unimodular lattices

10.2 Constructions of some Niemeier lattices

10.2.1 Construction of a Leech lattice

10.3 Basic theory of the Golay code

10.3.1 Characterization of certain Reed-Muller codes

10.3.2 About the Golay code

10.3.3 The octad Triangle and dodecads

10.3.4 A uniqueness theorem for the Golay code

10.4 Minimal vectors in the Leech lattice

10.5 First proof of uniqueness of the Leech lattice

10.6 Initial results about the Leech lattice

10.6.1 An automorphism which moves the standard frame ...

10.7 Turyn-style construction of a Leech lattice

10.8 Equivariant unimodularizations of even lattices

11 Pieces of Eight

11.1 Leech trios and overlattices

11.2 The order of the group O(A)

11.3 The simplicity of M24

11.4 Sublattices of Leech and subgroups of the isometry group

11.5 Involutions on the Leech lattice

References

Index

Appendix A The Finite Simple Groups

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有