王朝百科
分享
 
 
 

实验设计和分析

王朝百科·作者佚名  2012-03-05  
宽屏版  字体: |||超大  

图书信息书 名: 实验设计和分

作者:狄恩(AngelaDean)

出版社:世界图书出版公司

出版时间: 2010年4月1日

ISBN: 9787510005619

开本: 16开

定价: 129.00元

内容简介《实验设计和分析》主要内容包括:Principles and Techniques、Design: Basic Principles and Techniques、The Art of Experimentation、Replication、Blocking、Randomization、Analysis: Basic Principles and Techniques、Planning Experiments、A Checklist for Planning Experiments、Real Experiment——Cotton-Spinning Experiment等等。

图书目录Preface

1. Principles and Techniques

1.1. Design: Basic Principles and Techniques

1.1.1. The Art of Experimentation

1.1.2. Replication

1.1.3. Blocking

1.1.4. Randomization

1.2. Analysis: Basic Principles and Techniques

2. Planning Experiments

2.1. Introduction

2.2. A Checklist for Planning Experiments

2.3. A Real Experiment——Cotton-Spinning Experiment

2.4. Some Standard Experimental Designs

2.4.1. Completely Randomized Designs

2.4.2. Block Designs

2.4.3. Designs with Two or More Blocking Factors

2.4.4. Split-Plot Designs

2.5. More Real Experiments

2.5.1. Soap Experiment

2.5.2. Battery Experiment

2.5.3. Cake-Baking Experiment

Exercises

3. Designs with One Source of Variation

3.1. Introduction

3.2. Randomization

3.3. Model for a Completely Randomized Design

3.4. Estimation of Parameters

3.4.1. Estimable Functions of Parameters

3.4.2. Notation

3.4.3. Obtaining Least Squares Estimates

3.4.4. Properties of Least Squares Estimators

3.4.5. Estimation ofo2

3.4.6. Confidence Bound for ~r2

3.5. One-Way Analysis of Variance

3.5.1. Testing Equality of Treatment Effects

3.5.2. Use of p-Values

3.6. Sample Sizes

3.6.1. Expected Mean Squares for Treatments

3.6.2. Sample Sizes Using Power of a Test

3.7. A Real Experiment——-Soap Experiment, Continued

3.7.1. Checklist, Continued

3.7.2. Data Collection and Analysis

3.7.3. Discussion by the Experimenter

3.7.4. Further Observations by the Experimenter

3.8. Using SAS Software

3.8.1. Randomization

3.8.2. Analysis of Variance

Exercises

4. Inferences for Contrasts and Treatment Means

4.1. Introduction

4.2. Contrasts

4.2.1. Pairwise Comparisons

4.2.2. Treatment Versus Control

4.2.3. Difference of Averages

4.2.4. Trends

4.3. Individual Contrasts and Treatment Means

4.3.1. Confidence Interval for a Single Contrast

4.3.2. Confidence Interval for a Single Treatment Mean

4.3.3. Hypothesis Test for a Single Contrast or Treatment Mean

4.4. Methods of Multiple Comparisons

4.4.1. Multiple Confidence Intervals

4.4.2. Bonferroni Method for Preplanned Comparisons

4.4.3. Scheff6 Method of Multiple Comparisons

4.4.4. Tukey Method for All Pairwise Comparisons

4.4.5. Dunnett Method for Treatment-Versus-Control Comparisons

4.4.6. Hsu Method for Multiple Comparisons with the Best

reatment

4.4.7. Combination of Methods

4.4.8. Methods Not Controlling Experimentwise Error Rate

4.5. Sample Sizes

4.6. Using SAS Software

4.6.1. Inferences on Individual Contrasts

4.6.2. Multiple Comparisons

Exercises

5. Checking Model Assumptions

5.1. Introduction

5.2. Strategy for Checking Model Assumptions

5.2.1. Residuals

5.2.2. Residual Plots

5.3. Checking the Fit of the Model

5.4. Checking for Outliers

5.5. Checking Independence of the Error Terms

5.6. Checking the Equal Variance Assumption

5.6.1. Detection of Unequal Variances

5.6.2. Data Transformations to Equalize Variances

5.6.3. Analysis with Unequal Error Variances

5.7. Checking the Normality Assumption

5.8. Using SAS Software

5.8.1. Using SAS to Generate Residual Plots

5.8.2. Transforming the Data

Exercises

6. Experiments with Two Crossed Treatment Factors

6.1. Introduction

6.2. Models and Factorial Effects

6.2.1. The Meaning of Interaction

6.2.2. Models for Two Treatment Factors

6.2.3. Checking the Assumptions on the Model

6.3. Contrasts

6.3.1. Contrasts for Main Effects and Interactions

6.3.2. Writing Contrasts as Coefficient Lists

6.4. Analysis of the Two-Way Complete Model

6.4.1. Least Squares Estimators for the Two-Way Complete Model

6.4.2. Estimation ofo~ for the Two-Way Complete Model

6.4.3. Multiple Comparisons for the Complete Model

6.4.4. Analysis of Variance for the Complete Model

6.5. Analysis of the Two-Way Main-Effects Model

6.5.1. Least Squares Estimators for the Main-Effects Model

6.5.2. Estimation ofa2 in the Main-Effects Model

6.5.3. Multiple Comparisons for the Main-Effects Model

6.5.4. Unequal Variances

6.5.5. Analysis of Variance for Equal Sample Sizes

6.5.6. Model Building

6.6. Calculating Sample Sizes

6.7. Small Experiments

6.7.1. One Observation per Cell

6.7.2. Analysis Based on Orthogonal Contrasts

6.7.3. Tukey's Test for Additivity

6.7.4. A Real Experiment——Air Velocity Experiment

6.8. Using SAS Software

6.8.1. Contrasts and Multiple Comparisons

6.8.2. Plots

6.8.3. One Observation per Cell

Exercises

7. Several Crossed Treatment Factors

7.1. Introduction

7.2. Models and Factorial Effects

7.2.1. Models

7.2.2. The Meaning of Interaction

7.2.3. Separability of Factorial Effects

7.2.4. Estimation of Factorial Contrasts

7.3. Analysis——Equal Sample Sizes

7.4. A Real Experiment——Popcorn-Microwave Experiment

7.5. One Observation per Cell

7.5.1. Analysis Assuming That Certain Interaction Effects Are egligible

7.5.2. Analysis Using Normal Probability Plot of Effect Estimates

7.5.3. Analysis Using Confidence Intervals

7.6. Design for the Control of Noise Variability

7.6.1. Analysis of Design-by-Noise Interactions

7.6.2. Analyzing the Effects of Design Factors on Variability .

7.7. Using SAS Software

7.7.1. Normal Probability Plots of Contrast Estimates

7.7.2. Voss-Wang Confidence Interval Method

7.7.3. Identification of Robust Factor Settings

7.7.4. Experiments with Empty Cells

Exercises

8. Polynomial Regression

8.1. Introduction

8.2. Models

8.3. Least Squares Estimation (Optional)

8.3.1. Normal Equations

……

9. Analysis of Covariance

10. Complete Block Designs

11. Incomplete Block Designs

12. Designs with Two Blocking Factors

13. Confounded Two-Level Factorial Experiments

14. Confounding in General Factorial Experiments

15. Fractional Factorial Experiments

16. esponse Surface Methodology

17. andom Effects and Variance Components

18. estde Models

19. plit-Plot Designs

A. ables

Bibliography

Index of Authors

Index of Experiments

Index of Subjects

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
中国古代四大美女:背后隐藏惊人秘密
 女性   2025-06-20
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有