王朝百科
分享
 
 
 

可解群

王朝百科·作者佚名  2012-03-09  
宽屏版  字体: |||超大  

在数学的历史中,群论原本起源于对五次方程及更高次方程无一般的公式解之证明的找寻,最终随着伽罗瓦理论的提出而确立。可解群的概念产生于描述其根可以只用根式(平方根、立方根等等及其和与积)表示的多项式所对应的自同构群所拥有的性质。

一个群被称为可解的,若它拥有一个其商群皆为阿贝尔群的正规列。或者等价地说,若其降正规列

G▷G(1)▷G(2)▷▪▪▪▪▪▪▪▪▪▪

之中,每一个子群都会是前一个的导群,且最后一个为G的当然子群{1}。上述两个定义是等价的,对一个群H及H的正规子群N,其商群H/N为可交换的当且仅当N包含着H(1)。

对于有限群,有一个等价的定义为:一可解群为一有着其商群皆为质数目的循环群之合成列的群。此一定义会等价是因为每一个简单阿贝尔群都是有质数目的循环群。若尔当-赫尔德定理表示若一个合成列有此性质,则其循环群即会对应到某个体上的n个根。但此一定义的等价性并不必然于无限群中亦会成立:例如,因为每一个在加法下的整数群Z的非当然子群皆同构于Z本身,它不会有合成列,但是其有着唯一同构于Z的商群之正规列{0,Z},证明了其确实是可解的。

和乔治·波里亚的格言“若有一个你无法算出的问题,则会有的你可以算出的较简单的问题”相一致的,可解群通常在简化有关一复杂的群的推测至一系列有着简单结构-阿贝尔群的群的推测有着很有用的功用。

例子所有的阿贝尔群都是可解的-其商群A/B总会是可交换的,若A为可交换的。但非阿贝尔群则不一定都是可解的。

更一般地,所有幂零群都是可解的。特别地是,所有的有限p-群都是可解的,因为所有的有限p-群都会是幂零的。

可解但不为幂零的群的一个小例子为对称群S3。实际上,当最小的简单非可贝尔群为A5(5度的交错群)时,它允许每一个目小于60的群皆为可解的。

群S5不是可解的-它有一合成列{E,A5,S5}(且若尔当-赫尔德定理表示每个其他的合成列都会等价于此一合成列),给出了同构于A5及C2的商群;而A5为非可换的。广义化此一论述,结合An在n> 4时为Sn的正规、最大且非阿贝尔简单子群的事实,可知n> 4的所有Sn皆不可解,此亦为证明每一个n> 4的n次多项式都不可以以方根得解的关键步骤。

著名的范特-汤普逊定理叙述著,每一个奇数目的有限群皆是可解的。特别地是,此定理表示,若一有限群为简单的,其必为质数循环或有偶数目。

性质可解性的性质在某一意义上是可继承的,如下:

若G为可解的,且H为G的子群,则H也是可解的。

若G是可解的,且H为G的正规子群,则G/H也是可解的。

若G是可解的,且存在一G满射至H的同态,则H也是可解的。

若H及G/H为可解的,则G也是可解的。

若G及H为可解的,则其直积G × H也是可解的。

超可解群做为可解性的加强版,一个群G被称为超可解的,若它有一其商群皆为循环群的不变正规列;换句话说,if it is solvable with eachAi also being a normal subgroup ofG,且每个Ai+1/Ai都不只是可交换而已,且也是循环的(可能为无限目)。因为一正规列在定义中有有限的长度,所以不可数阿贝尔群不会是超可解的。实际上,所有的超可解群皆为有限产生群,且一个阿贝尔群为超可解的当且仅当其为有限产生的。

若限制在有限产生群中,将可以有下列的排序:

循环群 < 阿贝尔群 < 幂零群 < 超可解群 < 多重循环群 < 可解群 < 有限生成群

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格&#8203;十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有