王朝百科
分享
 
 
 

陈类

王朝百科·作者佚名  2012-04-06  
宽屏版  字体: |||超大  

概述数学上,特别是在代数拓扑和微分几何中,陈类(Chern class,或称陈示性类)是一类特殊的和复向量丛相关的示性类。

陈类因陈省身而得名,他在1940年代第一个给出了它们的一般定义。

陈类的性质给定一个拓扑空间X上的一个复向量丛V,V的陈类是一系列X的上同调的元素。V的第n个陈类通常记为cn(V),是整数系数的X的上同调

H 中的一个元素。类c0(V)总是等于1. 当V是复d维的丛,则类cn 在n > d时为0.

例如,若V是一个线丛,则只有在X的第二上同调群中有一个(第一)陈类。第一陈类实际上是可以从拓扑上为复线丛分类的一个完全不变量。也就是说,存在一个X上的线丛的同构等价类到H

对于1维以上的复向量丛,陈类不是一个完全不变量。

近复流形的陈类和配边(cobordism)陈类的理论导致了近复流形的配边不变量的研究。

若M是一个复流形,则其切丛是一个复向量丛。M的陈类定义为其切丛的陈类。若M是紧的2d维的,则每个陈类中的2d次单项式可以和M的基本类配对,得到一个整数,称为M的陈数。

若M′ 是另一个同维度的近复流形,则它和M配边,当且仅当M′和M陈数相同.

陈类的定义有很多处理这个定义的办法:陈最初使用了微分几何;在代数拓扑中,陈类是通过同伦理论定义的,该理论提供了把V和一个分类空间(在这个情况下是Grassmannian(格拉斯曼)空间)联系起来的映射;还有Alexander Grothendieck的一种办法,表明公理上只需定义线丛的情况就够了。陈类也自然的出现在代数几何中。

直观地说,陈类和向量丛的截面'所需要的0'的个数相关。

推广陈类理论有个一般化,其中普通的上同调由一个泛上同调群理论(generalized cohomology theory)所代替。使得这种一般化成为可能的称为复可定向的理论。陈类的形式化属性依然相同,但有一个关键的不同:计算线丛的张量积的第一陈类的规则不是各个因子的(普通)加法而是一个形式化群定律(formal group law)。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有