流形拓扑学:理论与概念的实质
图书信息书 名: 流形拓扑学:理论与概念的
实质
作者:马天
出版社:科学出版社
出版时间: 2010年10月1日
ISBN: 9787030285508
开本: 16开
定价: 98.00元
内容简介《流形拓扑学:理论与概念的实质》是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共轭结构理论,主要结果包括共轭对称性定理,上、下同调群的几何化定理,最小共轭元球面定理.在这些定理基础上,同调论和同伦论中许多重要定理与结果,如Poincare对偶,Lefschetz对偶,Kunneth公式,上、下同调群,以及Hurewicz定理等的实质及直观意义变得更清楚了。
《流形拓扑学:理论与概念的实质》适合于数学、理论物理等相关专业的高年级大学生、研究生、教师及研究人员学习和参考。
图书目录《现代数学基础丛书》序
前言
第1章 微分流形
1.1 基本概念
1.1.1 流形的概念
1.1.2 物理背景的流形
1.1.3 坐标系与微分结构
1.1.4 切空间与切映射
1.1.5 流形的定向
1.1.6 数学中的一些重要流形
1.2 流形的嵌入
1.2.1 反函数与隐函数定理
1.2.2 子流形的浸入与嵌入
1.2.3 到RN中的嵌入
1.2.4 Whitney嵌入定理
1.3 Fronbenius定理
1.3.1 流形上的向量场与流
1.3.2 向量场的Poisson括号积
1.3.3 Frobenius定理
1.3.4 两种等价的定理形式
1.4 正则值与横截性
1.4.1 Sard定理
1.4.2 横截性
1.4.3 Thom横截性定理
1.5 向量丛与管形邻域
1.5.1 向量丛
1.5.2 平凡丛的判别
1.5.3 向量丛的运算
1.5.4 万有向量丛
1.5.5 管形邻域定理
1.6 纤维丛
1.6.1 纤维丛的概念
1.6.2 球面的Hopf纤维化
1.6.3 主丛与万有丛
第2章 同调理论
2.1 同调群
2.1.1 同调群的实质
2.1.2 可剖分空间的单纯复形
2.1.3 单纯同调群
2.1.4 单纯同调群的拓扑不变性
2.1.5 Euler示性数及Euler-Poincar6公式
2.1.6 奇异同调群
2.1.7 单纯同调群与奇异同调群的同构
2.2 流形的共轭结构与同调几何化定理
2.2.1 流形的共轭元
2.2.2 正则流形
2.2.3 共轭元分类与同调类的几何化
2.2.4 Kiinneth公式与Leray-Hirsch定理
2.2.5 万有系数定理
2.2.6 一些流形的同调群
2.3 上同调论
2.3.1 上同调的实质
2.3.2 上同调群
2.3.3 上同调几何化定理的证明
2.3.4 同调环的结构
2.4 正合同调序列
2.4.1 相对同调群与切除定理
2.4.2 相关代数理论
2.4.3 同调序列
2.4.4 Mayer-Vietoris序列
2.4.5 正合序列的应用
2.5 流形的对称性
2.5.1 引言
2.5.2 共轭结构的对称性定理
2.5.3 Poincare对偶
2.5.4 带边流形的共轭结构及其对称性
2.5.5 Lefschetz对偶
2.5.6 Alexander对偶定理
第3章 谱序列及微分形式
3.1 过滤复形的谱序列
3.1.1 引言
3.1.2 Massey正合偶与谱序列的构造
3.1.3 双复形及其谱序列
3.2 微分形式与deRhaam复形
3.2.1 Rn中的微分形式
3.2.2 流形上的deRham复形
3.2.3 微分形式的积分
3.2.4 Stokes公式
3.2.5 Poincar~引理
3.2.6 关于deRham上同调的注记
3.3 eech-deRllain复形及谱序列的应用
3.3.1 背景介绍
3.3.2 层的概念
3.3.3 Oech上同调
3.3.4 eech.deRham复形
3.3.5 deRham定理
3.3.6 deRham上同调的几何表示
3.4 微分形式的Hodge分解定理
3.4.1 介绍
3.4.2 Hodeg,算子
3.4.3 流形上的张量场
3.4.4 Riemann流形
3.4.5 Laplace-Beltrami算子
3.4.6 Hodge定理
第4章 同伦论
4.1 同伦群
4.1.1 基本概念
4.1.2 一些基本性质
4.1.3 相对同伦群
4.1.4 同伦群的几何表示
4.1.5 正合同伦序列
4.1.6 直和分解公式
4.1.7 一些流形的同伦群
4.2 一些重要性质
4.2.1 共轭元的球面定理
4.2.2 ∏n(Sn)的计算与Hopf同伦分类
4.2.3 Hurewicz定理
4.2.4基本群的性质
4.2.5 Whitehead乘积
4.2.6 三联组同伦群
4.2.7 道路空间ΩX(A,B)上的同伦群
4.3 障碍理论
4.3.1 映射的延拓问题
4.3.2 n单式空间
4.3.3 映射的障碍类
4.3.4 同伦延拓定理
4.3.5 (n-1)连通空间的同伦分类
4.4 纤维丛上的谱序列及其应用
4.4.1 Leray谱序列定理
4.4.2 奇异链的双复形
4.4.3 一些应用
4.4.4 Gysin序列与王宪钟序列
4.4.5 Hurewicz定理谱序列的证明
4.5 球面同伦群的计算
4.5.1 Eilenberg-MacLane空间
4.5.2 Postnicov纤维化序列与丌4(Sn)的计算
4.5.3 Whitehead纤维化与∏5(Sn)的计算
4.5.4 球面同伦群的Serre定理
4.5.5 Freudenthal同纬像定理
4.5.6 部分∏N+k(Sn)的结果
第5章 奇点理论与指标公式
5.1 不动点及其指数
5.1.1 Brouwer不动点定理
5.1.2 Lefschetz数
5.1.3 映射的Brouwer拓扑度
……
第6章 示性类