百鸡问题

百鸡问题本问题记载于中国古代约5—6世纪成书的《张邱建算经》中,是原书卷下第38题,也是全书的最后一题:“今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡 母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十 四,值钱二十八。”该问题导致三元不定方程组,其重要之处在于开创“一问多答”的先例,这是过去中国古算书中所没有的。
原书没有给出解法,只说如果少买7只母鸡,就可多买4只公鸡和3只小鸡。所以只要得出一组答案,就可以推出其余两组答案。中国古算书的著名校勘者甄鸾和李淳风注释该书时都没给出解法,只有约6世纪的算学家谢察微记述过一种不甚正确的解法。到了清代,研究百鸡术的人渐多,1815年骆腾风使用大衍求一术解决了百鸡问题。1874年丁取忠创用一个简易的算术解法。在此前后时曰醇(约1870)推广了百鸡问作《百鸡术衍》,从此百鸡问题和百鸡术才广为人知。百鸡问题还有多种表达形式,如百僧吃百馒,百钱买百禽等。宋代杨辉算书内有类似问题,中古时近东各国也有相仿问题流传。例如印度算书和阿拉伯学者艾布·卡米勒的著作内都有百钱买百禽的问题,且与《张邱建算经》的题目几乎全同。
解法
中国古代算书《张丘建算经》中有一道著名的百鸡问题:公鸡每只值5 文钱,母鸡每只值3 文钱,而3 只小鸡值1 文钱。现在用100 文钱买100 只鸡,问:这100 只鸡中,公鸡、母鸡和小鸡各有多少只?
这个问题流传很广,解法很多,但从现代数学观点来看,实际上是一个求不定方程整数解的问题。解法如下:
设公鸡、母鸡、小鸡分别为x、y、z 只,由题意得:
①……x+y+z =100
②……5x+3y+(1/3)z =100
有两个方程,三个未知量,称为不定方程组,有多种解。
令②×3-①得:7x+4y=100;
所以y=(100-7x)/4=25-2x+x/4
令x/4=t, (t为整数)所以x=4t
把x=4t代入7x+4y=100得到:y=25-7t
易得z=-75-3t
所以:x=4t
y=25-7t
z=75+3t
因为x,y,z大于等于0
所以4t大于等于0
25-7t大于等于0
75+3t大于等于0
解得t大于等于0小于等于25/7 又因为t为整数
所以t=0,1,2,3(这里不要忘记t有等于0得可能)
当t=0时
x=0,y=25,z=75
当t=1时
x =4;y =18;z =78
当t=2时
x =8;y =11;z =81
当t=3时
x =12;y =4;z =84
C语言解法#include <stdio.h>
void main()
{
int money=100,x,y,z;
for (x=0;x<=20;x++)
for (y=0;y<=33;y++)
for (z=0;z<=300;z++)
{
if (x*5+y*3+z/3.0==100 && x+y+z==100)
{
printf("公鸡%d只,母鸡%d只,小鸡%d只
",x,y,z);
}
}
}