兔子数列

王朝百科·作者佚名  2009-12-19  
宽屏版  字体: |||超大  

兔子数列

即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21……

这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

【该数列有很多奇妙的属性】

比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……

还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

【斐波那契数列别名】

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

斐波那契数列

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?

我们不妨拿新出生的一对小兔子分析一下:

第一个月小兔子没有繁殖能力,所以还是一对;

两个月后,生下一对小兔民数共有两对;

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;

------

依次类推可以列出下表:

经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12

兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233

表中数字0,1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

【斐波那挈数列通项公式的推导】

斐波那契数列:0,1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

【C语言程序】

main()

{

long fib[40] = {1,1};

int i;

for(i=2;i<40;i++)

{

fib[i ] = fib[i-1]+fib[i-2];

}

for(i=0;i<40;i++)

{

printf("F%d==%d

", i, fib);

}

return 0;

}

【Pascal语言程序】

var

fib: array[0..40]of longint;

i: integer;

begin

fib[0] := 1;

fib[1] := 1;

for i:=2 to 39 do

fib[i ] := fib[i-1] + fib[i-2];

for i:=0 to 39 do

write('F', i, '=', fib[i ]);

end.

【数列与矩阵】

对于斐波那契数列0.1,1,2,3,5,8,13…….有如下定义

F(n)=f(n-1)+f(n-2)

F(1)=1

F(2)=1

对于以下矩阵乘法

F(n+1) = 1 1 * F(n)

F(n) 1 0 F(n-1)

它的运算就是

F(n+1)=F(n)+F(n-1)

F(n)=F(n)

可见该矩阵的乘法完全符合斐波那契数列的定义

设1 为B,1 1为C

1 1 0

可以用迭代得到:

斐波那契数列的某一项F(n)=(BC^(n-2))1

这就是斐波那契数列的矩阵乘法定义.

另矩阵乘法的一个运算法则A&not;^n(n为偶数)=A^(n/2)* A^(n/2).

因此可以用递归的方法求得答案.

时间效率:O(logn),比模拟法O(n)远远高效。

代码(PASCAL)

{变量matrix是二阶方阵, matrix是矩阵的英文}

program fibonacci;

type

matrix=array[1..2,1..2] of qword;

var

c,cc:matrix;

n:integer;

function multiply(x,y:matrix):matrix;

var

temp:matrix;

begin

temp[1,1]:=x[1,1]*y[1,1]+x[1,2]*y[2,1];

temp[1,2]:=x[1,1]*y[1,2]+x[1,2]*y[2,2];

temp[2,1]:=x[2,1]*y[1,1]+x[2,2]*y[2,1];

temp[2,2]:=x[2,1]*y[1,2]+x[2,2]*y[2,2];

exit(temp);

end;

function getcc(n:integer):matrix;

var

temp:matrix;

t:integer;

begin

if n=1 then exit(c);

t:=n div 2;

temp:=getcc(t);

temp:=multiply(temp,temp);

if odd(n) then exit(multiply(temp,c))

else exit(temp);

end;

procedure init;

begin

readln(n);

c[1,1]:=1;

c[1,2]:=1;

c[2,1]:=1;

c[2,2]:=0;

if n=1 then

begin

writeln(1);

halt;

end;

if n=2 then

begin

writeln(1);

halt;

end;

cc:=getcc(n-2);

end;

procedure work;

begin

writeln(cc[1,1]+cc[1,2]);

end;

begin

init;

work;

end.

【数列值的另一种求法】

F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]

其中[ x ]表示取距离 x 最近的整数。

【数列的前若干项】

0 1

1 1

2 2

3 3

4 5

5 8

6 13

7 21

8 34

9 55

10 89

11 144

12 233

13 377

14 610

15 987

16 1597

17 2584

18 4181

19 6765

20 10946

该数列有很多奇妙的属性

比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……

还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积少(请自己验证后自己确定)1,每个偶数项的平方都比前后两项之积多(请自己验证后自己确定)1。

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。如果所有的数都要求是自然数,能找出被任意正整数整除的项的此类数列,必然是斐波那契数列的某项开始每一项的倍数,如4,6,10,16,26……(从2开始每个数的两倍)。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:

1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1

2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)-1

3.f(0)+f(2)+f(4)+…+f(2n)=f(2n+1)-1

4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)

5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1

6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)

7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)

8.f(2n-1)=[f(n)]^2-[f(n-2)]^2

在杨辉三角中隐藏着斐波那契数列

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

……

过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8……

(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。

(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。

斐波那契数经常与花瓣的数目相结合:

3………………………百合和蝴蝶花

5………………………蓝花耧斗菜、金凤花、飞燕草

8………………………翠雀花

13………………………金盏草

21………………………紫宛

34,55,84……………雏菊

(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

(4)斐波那契数列与黄金比值

相继的斐波那契数的比的数列:

它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。

可它的每一项却都是整数。而且这个数列中相邻两项的比值,越靠后其值越接近0.618。这个数列有广泛的应用,如树的年分枝数目就遵循斐波那契数列的规律;而且计算机科学的发展,为斐波那契数列提供了新的应用场所。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有