函数依赖

王朝百科·作者佚名  2009-10-29  
宽屏版  字体: |||超大  

设R(U)是一个属性集U上的关系模式,X和Y是U的子集。

若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等, 而在Y上的属性值不等, 则称 “X函数确定Y” 或 “Y函数依赖于X”,记作X→Y。

X称为这个函数依赖的决定属性集(Determinant)。

Y=f(x)

说明:

1. 函数依赖不是指关系模式R的某个或某些关系实例满足的约束条件,而是指R的所有关系实例均要满足的约束条件。

2. 函数依赖是语义范畴的概念。只能根据数据的语义来确定函数依赖。

例如“姓名→年龄”这个函数依赖只有在不允许有同名人的条件下成立

3. 数据库设计者可以对现实世界作强制的规定。例如规定不允许同名人出现,函数依赖“姓名→年龄”成立。所插入的元组必须满足规定的函数依赖,若发现有同名人存在, 则拒绝装入该元组。

例: Student(Sno, Sname, Ssex, Sage, Sdept)

假设不允许重名,则有:

Sno → Ssex, Sno → Sage , Sno → Sdept,

Sno ←→ Sname, Sname → Ssex, Sname → Sage

Sname → Sdept

但Ssex -→ Sage

若 X → Y,并且 Y → X, 则记为 X ←→ Y。

若 Y 不函数依赖于 X, 则记为 X -→ Y。

在关系模式R(U)中,对于U的子集X和Y,

1.如果 X → Y,但 Y 不为 X 的子集,则称 X → Y 是非平凡的函数依赖

例:在关系SC(Sno, Cno, Grade)中,

非平凡函数依赖: (Sno, Cno) → Grade

2.若 X → Y,但 Y 为 X 的子集, 则称 X → Y 是平凡的函数依赖

平凡函数依赖: (Sno, Cno) → Sno ,(Sno, Cno) → Cno

3.若 x → y 并且,存在 x 的真子集 x1,使得 x1 → y, 则 y 部分依赖于 x。

例:学生表(学号,姓名,性别,班级,年龄)关系中,

部分函数依赖:(学号,姓名)→ 性别,学号 → 性别,所以(学号,姓名)→ 性别 是部分函数依赖

4.若 x → y 并且,对于 x 的任何一个真子集 x1,都不存在 x1 → y 则称y完全依赖于x。

例:成绩表(学号,课程号,成绩)关系中,

完全函数依赖:(学号,课程号)→ 成绩,学号 -→ 成绩,课程号 -→ 成绩,所以(学号,课程号)→ 成绩 是完成函

数依赖

5.若x → y并且y → z,而y -→ x,则有x → z,称这种函数依赖为传递函数依赖。

例:关系S1(学号,系名,系主任),

学号 → 系名,系名 → 系主任,并且 系名 -→ 学号,所以 学号 → 系主任 为传递函数依赖

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有