曲线

王朝百科·作者佚名  2009-10-24  
宽屏版  字体: |||超大  

曲线

什么是曲线?

按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说:

(1.)R3中的曲线是一个一维空间的连续像,因此是一维的 .

(2.)R3中的曲线可以通过直线做各种扭曲得到 .

(3.)说参数的某个值,就是说曲线上的一个点,但是反过来不一定,因为我们可以考虑自交的曲线。

微分几何就是利用微积分来研究几何的学科,为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。但是可微曲线也是不太好的,因为可能存在某些曲线,在某点切线的方向不是确定的,这就使得我们无法从切线开始入手,这就需要我们来研究导数处处不为零的这一类曲线,我们称它们为正则曲线。

正则曲线才是经典曲线论的主要研究对象。

曲线:任何一根连续的线条都称为曲线,包括直线、折线、线段、圆弧等。

曲线是1-2维的图形,参考《分数维空间》。

处处转折的曲线一般具有无穷大的长度和零的面积,这时,曲线本身就是一个大于1小于2维的空间。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有