王朝百科
分享
 
 
 

不动点理论

王朝百科·作者佚名  2010-01-07  
宽屏版  字体: |||超大  

不动点理论

fixed point theory

关于方程的一种一般理论。数学里到处要解方程,诸如代数方程、函数方程、微分方程等等,种类繁多,形式各异。但是它们常能改写成ƒ(x)=x的形状,这里x 是某个适当的空间Χ中的点,ƒ是从Χ到Χ的一个映射或运动,把每一点x移到点ƒ(x)。方程ƒ(x)=x的解恰好就是在ƒ这个运动之下被留在原地不动的点,故称不动点。于是,解方程的问题就化成了找不动点这个几何问题。不动点理论研究不动点的有无、个数、性质与求法。研究方法主要是拓扑的和泛函分析的(见非线性算子)。

常见的不动点定理压缩映射原理(C.(C.-)É.皮卡(1890);S.巴拿赫(1922)):设X是一个完备的度量空间,映射ƒ:Χ→Χ 把每两点的距离至少压缩λ倍,即d(ƒ(x),ƒ(y))≤λd(x,y),这里λ是一个小于1的常数,那么ƒ必有而且只有一个不动点,而且从Χ的任何点x0出发作出序列x1=ƒ(x0),x2=ƒ(x1),...,xn=ƒ(x(n-1)),...,这序列一定收敛到那个不动点。这条定理是许多种方程的解的存在性、惟一性及迭代解法的理论基础。由于分析学的需要,这定理已被推广到非扩展映射、概率度量空间、映射族、集值映射等许多方面。

布劳威尔不动点定理(1910):设Χ是欧氏空间中的紧凸集,那么Χ到自身的每个连续映射都至少有一个不动点。用这定理可以证明代数基本定理:复系数的代数方程一定有复数解。把布劳威尔定理中的欧氏空间换成巴拿赫空间,就是绍德尔不动点定理(1930),常用于偏微分方程理论。这些定理可以从单值映射推广到集值映射,除微分方程理论外还常用于对策论和数理经济学。

不动点指数 不动点的个数有两种数法。代数上通常说n次复多项式有n个复根,是把一个k重根算作k个根的;如果不把重数统计在内,根的个数就可以小于n。推广根的重数概念,可以定义不动点的指数,它是一个整数,可正可负可零,取决于映射在不动点附近的局部几何性质。一个映射的所有不动点的指数的总和,称为这映射的不动点代数个数,以别于不动点的实际个数。莱夫谢茨不动点定理:设Χ是紧多面体,ƒ:Χ→Χ是映射,那么ƒ的不动点代数个数等于ƒ的莱夫谢茨数L(ƒ),它是一个容易计算的同伦不变量,可以利用同调群以简单的公式写出。当L(ƒ)≠0时,与ƒ同伦的每个映射都至少有一个不动点。这个定理既发展了布劳威尔定理,也发展了关于向量场奇点指数和等于流形的欧拉数的庞加莱-霍普夫定理,把它进一步推广到泛函空间而得的勒雷-绍德尔参数延拓原理,早已成为偏微分方程理论的标准的工具。

J.尼尔斯1927年发现,一个映射ƒ 的全体不动点可以自然地分成若干个不动点类,每类中诸不动点的指数和都是同伦不变量。指数和不为0的不动点类的个数,称为这映射的尼尔斯数N(ƒ)。只要Χ是维数大于2的流形,N(ƒ)恰是与 ƒ同伦的映射的最少不动点数。这就提供了研究方程的解的实际个数(而不只是代数个数)的一种方法。

莱夫谢茨定理的一个重要发展是关于微分流形上椭圆型算子与椭圆型复形的阿蒂亚-辛格指标定理与阿蒂亚-博特不动点定理。 不动点的计算 上述各种不动点定理,除压缩映射原理外,都未给出不动点的具体求法。由于应用上的需要,不动点算法的研究正在蓬勃发展,以求把拓扑的思路落实为快速、实用的计算方法。

参考书目江泽涵著:《不动点类理论》,科学出版社,北京,1979。 V. I. Istratescu,Fixed Point Theory,an Introduction,D. Reidel Pub.Co., Dordrecht, 1981. B.Jiang,Lectures on Nielsen Fixed Point Theory,Amer. Math. Soc., Providence, 1983. M.J.Todd,The Computation of Fixed Points and Applications, Springer-Verlag, New York, 1976.

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
感谢员工的付出和激励的话怎么说?
 干货   2023-06-18
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有