公理化集合论

王朝百科·作者佚名  2010-01-10  
宽屏版  字体: |||超大  

公理化集合论是数学的一门分支。在数学中,公理化集合理是集合论透过建立一阶逻辑的严谨重整,以解决朴素集合论中出现的悖论。集合论的基础主要由德国数学家格奥尔格·康托尔在19世纪末建立。

集合论中其中一套由Skolem最后整理的公理系统,称为Zermelo-Fraenkel 集合论 (ZF)。实际上,这个名称经常不包括历史上远比今天具争议性的选择公理,当包括了选择公理,这套系统被称为ZFC。

外延公理: 两个集合相同,当且仅当它们拥有相同的元素。 空集公理: 存在着一个不包含任何元素的集合,我们记这个空集合为{}。配对公理: 假如x,y为集合,那就有另一个集合{x,y}包含x与y作为它的仅有元素。并集公理: 每一个集合也有一个并集。也就是说,对于每一个集合x,也总存在着另一个集合y,而y的元素也就是而且只会是x的元素的元素。 无穷公理: 存在着一个集合x,空集{}为其元素之一,且对于任何x中的元素y,yU {y}也是x的元素。 分类公理(或子集公理):给出任何集合及命题P(x),存在着一个原来集合的子集包含而且只包含使P(x)成立的元素。替代公理幂集公理: 每一个集合也有其幂集。那就是,对于任何的x,存在着一个集合y,使y的元素是而且只会是x的子集。 正规公理 (or axiom of foundation): 每一个非空集合x,总包含着一元素y,使x与y为不交集。 选择公理: (Zermelo's version) 给出一个集合x,其元素皆为互不相交的非空集,那总存在着一个集合y(x的一个选择集合),包含x每一个元素的谨谨一个元素。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有