超椭圆曲线

王朝百科·作者佚名  2010-01-13  
宽屏版  字体: |||超大  

超椭圆曲线

设C是代数曲线,如果存在一个从C到射影直线P^1的二次覆盖(即全纯的2:1满射),就称C是超椭圆曲线(hyperelliptic curve)。

亏格为2的曲线必定是超椭圆曲线。 超椭圆曲线的曲线自同构群Aut(C)包含一个对合映射,从而诱导出到P^1的二次覆盖,对合映射的不动点恰好就是二次覆盖的分歧点。Aut(C)可以由P^1的曲线自同构群诱导出来。 

对于域K,亏格为g超椭圆曲线的基本形式是

y^2+h(x)y=f(y).

其中f(x)为2g+1次多项式,h(x)是次数小于等于g的多项式。多项式的系数都在K上。

超椭圆曲线在密码学中有很大的应用。美国华盛顿大学教授Neal Koblitz首先发明了超椭圆曲线密码。超椭圆曲线密码是利用超椭圆曲线C的Jacobian上的离散对数问题(HECDLP)的‘不可行性’。但是只有亏格为2的超椭圆曲线密码的安全性能和椭圆曲线密码的安全性媲美。无论是域K过小或者亏格g过大都会使得超椭圆曲线密码不安全。

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有