王朝百科
分享
 
 
 

维纳过程

王朝百科·作者佚名  2010-01-15  
宽屏版  字体: |||超大  

维纳过程的定义:

若一个随机过程{X(t),t>=0}满足:

(1) X(t)是独立增量过程;

(2) 任意s,t>0,X(s+t)-X(s)~N(0,c^2*t),即X(s+t)-X(s)是期望为0,方差为c^2*t的正态分布;

(3) X(t)关于t是连续函数。

则称{X(t),t>=0}是维纳过程(Wiener process)或布朗运动。

维纳过程又称布朗运动,它具有如下特点:

(1)它是一个Markov过程。因此该过程的当前值就是做出其未来预测中所需的全部信息。

(2)维纳过程具有独立增量。该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率。

(3)它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加。

给定二阶矩过程{W(t), t³0}, 如果它满足

1.具有独立增量

2.对任意的t>s³0, 增量

W(t)-W(s)~N(0,62 (t-s)), 且s>0

3.W(0)=0

则称此过程为维纳过程.

维纳过程是布朗运动的数学模型. 英国植物学家布朗在显微镜下, 观察漂浮在平静的液面上的微小粒子, 发现它们不断地进行着杂乱无章的运动, 这种现象后来称为布朗运动. 以W(t)表示运动中一微粒从时刻t=0到时刻t>0的位移的横坐标(同样也可以讨论纵坐标), 且设W(0)=0, 根据爱因斯坦1905年提出的理论, 微粒的这种运动是由于受到大量随机的相互独立的分子的碰撞的结果. 于是, 粒子在时段(s,t]上的位移可以看作是许多微小位移的代数和. 则W(t)-W(s)服从正态分布.

维纳过程增量的分布只与时间差有关, 所以它是齐次的独立增量过程. 它也是正态过程. 其分布完全由它的均值函数与自协方差函数所确定. 维纳过程不只是布朗运动的数学模型, 电子元件在恒温下的热噪声也可归结为维纳过程.

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
中国古代四大美女:背后隐藏惊人秘密
 女性   2025-06-20
如何用java替换看不见的字符比如零宽空格​十六进制U+200B
 干货   2023-09-10
网页字号不能单数吗,网页字体大小为什么一般都是偶数
 干货   2023-09-06
java.lang.ArrayIndexOutOfBoundsException: 4096
 干货   2023-09-06
Noto Sans CJK SC字体下载地址
 干货   2023-08-30
window.navigator和navigator的区别是什么?
 干货   2023-08-23
js获取referer、useragent、浏览器语言
 干货   2023-08-23
oscache遇到404时会不会缓存?
 干货   2023-08-23
linux下用rm -rf *删除大量文件太慢怎么解决?
 干货   2023-08-08
刀郎新歌破世界纪录!
 娱乐   2023-08-01
js实现放大缩小页面
 干货   2023-07-31
生成式人工智能服务管理暂行办法
 百态   2023-07-31
英语学习:过去完成时The Past Perfect Tense举例说明
 干货   2023-07-31
Mysql常用sql命令语句整理
 干货   2023-07-30
科学家复活了46000年前的虫子
 探索   2023-07-29
英语学习:过去进行时The Past Continuous Tense举例说明
 干货   2023-07-28
meta name="applicable-device"告知页面适合哪种终端设备:PC端、移动端还是自适应
 干货   2023-07-28
只用css如何实现打字机特效?
 百态   2023-07-15
css怎么实现上下滚动
 干货   2023-06-28
canvas怎么画一个三角形?
 干货   2023-06-28
canvas怎么画一个椭圆形?
 干货   2023-06-28
canvas怎么画一个圆形?
 干货   2023-06-28
canvas怎么画一个正方形?
 干货   2023-06-28
中国河南省郑州市金水区蜘蛛爬虫ip大全
 干货   2023-06-22
javascript简易动态时间代码
 干货   2023-06-20
 
>>返回首页<<
 
 
静静地坐在废墟上,四周的荒凉一望无际,忽然觉得,凄凉也很美
© 2005- 王朝网络 版权所有