费马原理
地震学中的费马原理:地震波沿射线传播的旅行时和沿其他路径传播的旅行时相比为最小,亦是波沿旅行时最小的路径传播。
光学中的费马原理:光线在两点间的实际路径是使所需的传播时间为极值的路径[1]。在大部分情况下,此极值为最小值,但有时为最大值,有时为恒定值。
费马原理对折射定律的证明
假设光从介质n_1入射到介质n_2。在两个介质的交界面上取一条直线为x轴,法线为y轴,建立直角坐标系;在入射光线上任取一点A(x_1, y_1),光线与两介质交界面的交点为B(x, 0),在折射光线上任取一点C(x_2, y_2)。 AB之间的距离为sqrt, BC之间的距离为sqrt。 由费马原理可知,光从A点经过B点到C点,所用的时间t 应该是最短的。t=left(frac
ight)(ABn_1+BCn_2), t 取最小值的条件是frac=0。 经整理得 frac = frac, sinheta_1 = frac 且 sinheta_2 = frac 即 n_1sinheta_1 = n_2sinheta_2 (Snell's law) 。在高中我们学了光在不同介质中发生折射,关于光在不同介质中发生折射,它们产生的入射角和反射角可以用数学方程,实际上费马原理指出,光线在A,B两点之间的传播距离的实际路径,与其他可能的邻近的路程相比,其光程为极值。
费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。光的可逆性原理是几何光学中的一条普遍原理,该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播 。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。