八皇后问题
八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
一 回溯算法的实现
1. 一般算法
(1) 头文件:eigqueprob.h
#include<stdio.h>
#define N 8 /* N 表示皇后的个数 */
/* 用来定义答案的结构体 */
typedef struct
{
int line; /* 答案的行号 */
int row; /* 答案的列号 */
}ANSWER_TYPE;
/* 用来定义某个位置是否被占用 */
typedef enum
{
notoccued = 0, /* 没被占用 */
occued = 1 /* 被占用 */
}IFOCCUED;
/* 该列是否已经有其他皇后占用 */
IFOCCUED rowoccu[N];
/* 左上-右下对角位置已经有其他皇后占用 */
IFOCCUED LeftTop_RightDown[2*N-1];
/* 右上-左下对角位置已经有其他皇后占用*/
IFOCCUED RightTop_LefttDown[2*N-1];
/* 最后的答案记录 */
ANSWER_TYPE answer[N];
(2)主程序文件
#include "eigqueprob.h"
/* 寻找下一行占用的位置 */
void nextline(int LineIndex)
{
static asnnum = 0; /* 统计答案的个数 */
int RowIndex = 0; /* 列索引 */
int PrintIndex = 0;
/* 按列开始遍历 */
for (RowIndex=0;RowIndex<N;RowIndex++)
{
/* 如果列和两个对角线上都没有被占用的话,则占用该位置 */
if ( ( notoccued == rowoccu[RowIndex] )
&&( notoccued == LeftTop_RightDown[LineIndex-RowIndex+N-1] )
&&( notoccued == RightTop_LefttDown[LineIndex+RowIndex] ) )
{
/* 标记已占用 */
rowoccu[RowIndex] = occued;
LeftTop_RightDown[LineIndex-RowIndex+N-1] = occued;
RightTop_LefttDown[LineIndex+RowIndex] = occued;
/* 标记被占用的行、列号 */
answer[LineIndex].line = LineIndex;
answer[LineIndex].row = RowIndex;
/* 如果不是最后一行,继续找下一行可以占用的位置 */
if ( (N-1) > LineIndex )
{
nextline(LineIndex+1);
}
/* 如果已经到了最后一行,输出结果 */
else
{
asnnum++;
printf("
The %dth answer is :",asnnum);
for (PrintIndex=0;PrintIndex<N;PrintIndex++)
{
printf("(%d,%d) ",answer[PrintIndex].line+1,answer[PrintIndex].row+1);
}
/* 每10个答案一组,与其他组隔两行 */
if ((asnnum % 10) == 0)
printf("
");
}
/* 清空占用标志,寻找下一组解 */
rowoccu[RowIndex] = notoccued;
LeftTop_RightDown[LineIndex-RowIndex+N-1] = notoccued;
RightTop_LefttDown[LineIndex+RowIndex] = notoccued;
}
}
}
main()
{
int i = 0;
/* 调用求解函数*/
nextline(i);
/* 保持屏幕结果*/
getchar();
}
2. 带图形显示的实现
对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。下面是用Turbo C实现的八皇后问题的图形程序,能够演示全部的92组解。八皇后问题动态图形的实现,主要应解决以下两个问题。
(1)回溯算法的实现
(a)为解决这个问题,我们把棋盘的横坐标定为i,纵坐标定为j,i和j的取值范围是从1到8。当某个皇后占了位置(i,j)时,在这个位置的垂直方向、水平方向和斜线方向都不能再放其它皇后了。用语句实现,可定义如下三个整型数组:a[8],b[15],c[24]。其中:
a[j-1]=1 第j列上无皇后
a[j-1]=0 第j列上有皇后
b[i+j-2]=1 (i,j)的对角线(左上至右下)无皇后
b[i+j-2]=0 (i,j)的对角线(左上至右下)有皇后
c[i-j+7]=1 (i,j)的对角线(右上至左下)无皇后
c[i-j+7]=0 (i,j)的对角线(右上至左下)有皇后
(b)为第i个皇后选择位置的算法如下:
for(j=1;j<=8;j++) /*第j个皇后在第j行*/
if ((i,j)位置为空)) /*即相应的三个数组的对应元素值为1*/
{占用位置(i,j) /*置相应的三个数组对应的元素值为0*/
if i<8
为i+1个皇后选择合适的位置;
else 输出一个解
}
(2)图形存取
在Turbo C语言中,图形的存取可用如下标准函数实现:
size=imagesize(x1,y1,x2,y2) ;返回存储区域所需字节数。
arrow=malloc(size);建立指定大小的动态区域位图,并设定一指针arrow。
getimage(x1,y1,x2,y2,arrow);将指定区域位图存于一缓冲区。
putimage(x,y,arrow,copy)将位图置于屏幕上以(x,y)左上角的区域。
(3)程序清单如下
#include <graphics.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
char n[3]={'0','0'};/*用于记录第几组解*/
int a[8],b[15],c[24],i;
int h[8]={127,177,227,277,327,377,427,477};/*每个皇后的行坐标*/
int l[8]={252,217,182,147,112,77,42,7}; /*每个皇后的列坐标*/
void *arrow;
void try(int i)
{int j;
for (j=1;j<=8;j++)
if (a[j-1]+b[i+j-2]+c[i-j+7]==3) /*如果第i列第j行为空*/
{a[j-1]=0;b[i+j-2]=0;c[i-j+7]=0;/*占用第i列第j行*/
putimage(h[i-1],l[j-1],arrow,COPY_PUT);/*显示皇后图形*/
delay(500);/*延时*/
if(i<8) try(i+1);
else /*输出一组解*/
{n[1]++;if (n[1]>'9') {n[0]++;n[1]='0';}
bar(260,300,390,340);/*显示第n组解*/
outtextxy(275,300,n);
delay(3000);
}
a[j-1]=1;b[i+j-2]=1;c[i-j+7]=1;
putimage(h[i-1],l[j-1],arrow,XOR_PUT);/*消去皇后,继续寻找下一组解*/
delay(500);
}}
int main(void)
{int gdrive=DETECT,gmode,errorcode;
unsigned int size;
initgraph(&gdrive,&gmode,"");
errorcode=graphresult();
if (errorcode!=grOk)
{printf("Graphics error
");exit(1);}
rectangle(50,5,100,40);
rectangle(60,25,90,33);
/* 画皇冠 */
line(60,28,90,28);line(60,25,55,15);
line(55,15,68,25);line(68,25,68,10);
line(68,10,75,25);line(75,25,82,10);
line(82,10,82,25);line(82,25,95,15);
line(95,15,90,25);
size=imagesize(52,7,98,38); arrow=malloc(size);
getimage(52,7,98,38,arrow); /* 把皇冠保存到缓冲区 */
clearviewport();
settextstyle(TRIPLEX_FONT, HORIZ_DIR, 4);
setusercharsize(3, 1, 1, 1);
setfillstyle(1,4);
for (i=0;i<=7;i++) a=1;
for (i=0;i<=14;i++) b=1;
for (i=0;i<=23;i++) c=1;
for (i=0;i<=8;i++) line(125,i*35+5,525,i*35+5); /* 画棋盘 */
for (i=0;i<=8;i++) line(125+i*50,5,125+i*50,285);
try(1); /* 调用递归函数 */
delay(3000);
closegraph();
free(arrow);
}
二、循环实现 Java
/*
* 8皇后问题:
*
* 问题描述:
* 在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相冲突
*(在每一横列,竖列,斜列只有一个皇后)。
*
* 数据表示:
* 用一个 8 位的 8 进制数表示棋盘上皇后的位置:
* 比如:45615353 表示:
* 第0列皇后在第4个位置
* 第1列皇后在第5个位置
* 第2列皇后在第6个位置
* 。。。
* 第7列皇后在第3个位置
*
* 循环变量从 00000000 加到 77777777 (8进制数)的过程,就遍历了皇后所有的情况
* 程序中用八进制数用一个一维数组 data[] 表示
*
* 检测冲突:
* 横列冲突:data == data[j]
* 斜列冲突:(data+i) == (data[j]+j) 或者 (data-i) == (data[j]-j)
*
* 好处:
* 采用循环,而不是递规,系统资源占有少
* 可计算 n 皇后问题
* 把问题线性化处理,可以把问题分块,在分布式环境下用多台计算机一起算。
*
* ToDo:
* 枚举部分还可以进行优化,多加些判断条件速度可以更快。
* 输出部分可以修改成棋盘形式的输出
*
* @author cinc 2002-09-11
*
*/
public class Queen {
int size;
int resultCount;
public void compute ( int size ) {
this.size = size;
resultCount = 0;
int data[] = new int[size];
int count; // 所有可能的情况个数
int i,j;
// 计算所有可能的情况的个数
count = 1;
for ( i=0 ; i<size ; i++ ) {
count = count * size;
}
// 对每一个可能的情况
for ( i=0 ; i<count ; i++ ) {
// 计算这种情况下的棋盘上皇后的摆放位置,用 8 进制数表示
// 此处可优化
int temp = i;
for ( j=0 ; j<size ; j++ ) {
data [j] = temp % size;
temp = temp / size;
}
// 测试这种情况是否可行,如果可以,输出
if ( test(data) )
output( data );
}
}
/*
* 测试这种情况皇后的排列是否可行
*
*/
public boolean test( int[] data ) {
int i,j;
for ( i=0 ; i<size ; i++ ) {
for ( j=i+1 ; j<size ; j++ ) {
// 测试是否在同一排
if ( data == data[j] )
return false;
// 测试是否在一斜线
if ( (data+i) == (data[j]+j) )
return false;
// 测试是否在一反斜线
if ( (data-i) == (data[j]-j) )
return false;
}
}
return true;
}
/*
* 输出某种情况下皇后的坐标
*
*/
public void output ( int[] data ) {
int i;
System.out.print ( ++resultCount + ": " );
for ( i=0 ; i<size ; i++ ) {
System.out.print ( "(" + i + "," + data + ") " );
}
System.out.println ();
}
public static void main(String args[]) {
(new Queen()).compute( 8 );
}
}
三、八皇后问题的Qbasic版的解决方案
10 I = 1
20 A(I) = 1
30 G = 1
40 FOR K = I - 1 TO 1 STEP -1
50 IF A(I) = A(K) THEN 70
60 IF ABS(A(I) - A(K)) <> I - K THEN 90
70 G = 0
80 GOTO 100
90 NEXT K
100 IF I <> 8 THEN 180
110 IF G = 0 THEN 180
120 FOR L = 1 TO 8
130 PRINT USING “##”; A(L);
140 NEXT L
150 PRINT “*”;
160 M = M + 1
170 IF M MOD 3 = 0 THEN PRINT
180 IF G = 0 THEN 230
190 IF I = 8 THEN 230
200 I = I + 1
210 A(I) = 1
220 GOTO 30
230 IF A(I) < 8 THEN 270
240 I = I - 1
250 IF I = 0 THEN 290
260 GOTO 230
270 A(I) = A(I) + 1
280 GOTO 30
290 PRINT
300 PRINT “SUM=”; USING “##”; M;
310 PRINT
320 END
四、八皇后问题的高效解法-递归版
//8 Queen 递归算法
//如果有一个Q 为 chess=j;
//则不安全的地方是 k行 j位置,j+k-i位置,j-k+i位置
class Queen8{
static final int QueenMax = 8;
static int oktimes = 0;
static int chess[] = new int[QueenMax];//每一个Queen的放置位置
public static void main(String args[]){
for (int i=0;i<QueenMax;i++)chess=-1;
placequeen(0);
System.out.println("
八皇后共有"+oktimes+"个解法 made by yifi 2003");
}
public static void placequeen(int num){ //num 为现在要放置的行数
int i=0;
boolean qsave[] = new boolean[QueenMax];
for(;i<QueenMax;i++) qsave=true;
//下面先把安全位数组完成
i=0;//i 是现在要检查的数组值
while (i<num){
qsave[chess]=false;
int k=num-i;
if ( (chess+k >= 0) && (chess+k < QueenMax) ) qsave[chess+k]=false;
if ( (chess-k >= 0) && (chess-k < QueenMax) ) qsave[chess-k]=false;
i++;
}
//下面历遍安全位
for(i=0;i<QueenMax;i++){
if (qsave==false)continue;
if (num<QueenMax-1){
chess[num]=i;
placequeen(num+1);
}
else{ //num is last one
chess[num]=i;
oktimes++;
System.out.println("这是第"+oktimes+"个解法 如下:");
System.out.println("第n行: 1 2 3 4 5 6 7 8");
for (i=0;i<QueenMax;i++){
String row="第"+(i+1)+"行: ";
if (chess==0);
else
for(int j=0;j<chess;j++) row+="--";
row+="++";
int j = chess;
while(j<QueenMax-1){row+="--";j++;}
System.out.println(row);
}
}
}
//历遍完成就停止
}
}
五、java实现//8 Queen 递归算法//如果有一个Q 为 chess=j;
//则不安全的地方是 k行 j位置,j+k-i位置,j-k+i位置
class Queen8{
static final int QueenMax = 8;
static int oktimes = 0;
static int chess[] = new int[QueenMax];//每一个Queen的放置位置
public static void main(String args[]){
for (int i=0;i<QueenMax;i++)chess=-1;
placequeen(0);
System.out.println("
八皇后共有"+oktimes+"个解法 made by yifi 2003");
}
public static void placequeen(int num){ //num 为现在要放置的行数
int i=0;
boolean qsave[] = new boolean[QueenMax];
for(;i<QueenMax;i++) qsave=true;
//下面先把安全位数组完成
i=0;//i 是现在要检查的数组值
while (i<num){
qsave[chess]=false;
int k=num-i;
if ( (chess+k >= 0) && (chess+k < QueenMax) ) qsave[chess+k]=false;
if ( (chess-k >= 0) && (chess-k < QueenMax) ) qsave[chess-k]=false;
i++;
}
//下面历遍安全位
for(i=0;i<QueenMax;i++){
if (qsave==false)continue;
if (num<QueenMax-1){
chess[num]=i;
placequeen(num+1);
}
else{ //num is last one
chess[num]=i;
oktimes++;
System.out.println("这是第"+oktimes+"个解法 如下:");
System.out.println("第n行: 1 2 3 4 5 6 7 8");
for (i=0;i<QueenMax;i++){
String row="第"+(i+1)+"行: ";
if (chess==0);
else
for(int j=0;j<chess;j++) row+="--";
row+="++";
int j = chess;
while(j<QueenMax-1){row+="--";j++;}
System.out.println(row);
}
}
}
//历遍完成就停止
}
}
六、c#实现采用的思路大致是这样:
将一个皇后向下移动一个位置;
如果没有成功移动(超出边界),失败;
如果成功移动,则判断当前位置是否可用?如果不可用,则重做 1;
继续给下一个皇后安排位置。
结束条件:
如果第一个皇后的所有位置都尝试完毕仍然没有可用的解决方案或者最后一个皇后已经安排完毕。
代码如下:
1// AppEntry.cs
2using System;
3
4namespace Chenglin
5{
6 class AppEntry
7 {
8 static void Main(string[] args)
9 {
10 int queenNumber = 8;
11 QueenRowCollection q = new QueenRowCollection(queenNumber);
12
13 bool flag;
14 DateTime timeStarted = DateTime.Now;
15 flag = q.PositionQueens();
16 TimeSpan ts = DateTime.Now.Subtract( timeStarted );
17
18
19 if( flag ) {
20 Console.WriteLine( q.ToString() );
21 }
22 else {
23 Console.WriteLine( "Failed" );
24 }
25
26 Console.WriteLine( " seconds has been elapsed.", ts.TotalSeconds );
27 }
28 }
29} 1// QueenRowCollection.cs
2using System;
3using System.Text;
4
5namespace Chenglin
6{
7 public class QueenRowCollection
8 {
9
10 public QueenRowCollection( int numberOfQueens ){
11 this.numberOfQueens = numberOfQueens;
12 this.rows = new QueenRow[ numberOfQueens ];
13
14 for( int i=0;i<numberOfQueens;i++ ){
15 rows = new QueenRow( numberOfQueens );
16 }
17 }
18
19 public bool PositionQueens()
20 {
21 return PositionQueen( 0 );
22 }
23
24 private bool PositionQueen( int row )
25 {
26 if( row>=this.numberOfQueens ) {
27 return true;
28 }
29
30 QueenRow q = rows[row];
31 while( q.MoveNext() )
32 {
33 if( PositionAvailable( row, q.CurrentPosition ) ) {
34 // An available position has been found for the current queen,
35 // and try to find a proper position for the next queen.
36 //
37 // If no available position can be found for the next queen,
38 // the current queen should move to the next position and try again.
39 //
40 if( PositionQueen( row+1 ) )
41 {
42 // Both the current queen and the next queen
43 // have found available positions.
44 //
45 return true;
46 }
47 }
48 }
49
50 // No position is available for the current queen,
51 //
52 return false;
53 }
54
55 private bool PositionAvailable( int row, int column ){
56 for( int i=row-1; i>=0; i-- )
57 {
58 if( rows.PositionOccupied( column ) )
59 return false;
60
61 if( rows.PositionOccupied( column-(i-row) ) )
62 return false;
63
64 if( rows.PositionOccupied( column+(i-row) ) )
65 return false;
66 }
67
68 return true;
69 }
70
71 public override string ToString()
72 {
73 StringBuilder s = new StringBuilder();
74
75 foreach( QueenRow q in rows ){
76 s.AppendFormat( "", q, Environment.NewLine );
77 }
78
79 return s.ToString();
80 }
81
82 private int numberOfQueens;
83 private QueenRow [] rows;
84 }
85} 1// QueenRow.cs
2using System;
3using System.Text;
4
5namespace Chenglin
6{
7 public class QueenRow
8 {
9 public QueenRow( int numberOfPositions )
10 {
11 this.numberOfPositions = numberOfPositions;
12 this.currentPosition = -1;
13 this.columns = new bool[ numberOfPositions ];
14 }
15
16 public bool MoveNext(){
17 if( currentPosition>=0 && currentPosition<this.numberOfPositions ){
18 columns[currentPosition] = false;
19 }
20
21 if( currentPosition<this.numberOfPositions-1){
22 currentPosition ++;
23 columns[currentPosition] = true;
24 return true;
25 }
26 else {
27 currentPosition = -1;
28 return false;
29 }
30 }
31
32 public bool PositionOccupied( int column ){
33 if( column<0 || column>=numberOfPositions ){
34 return false;
35 }
36
37 return columns[column];
38 }
39
40 public override string ToString()
41 {
42 StringBuilder s = new StringBuilder();
43
44 foreach( bool b in columns ){
45 s.AppendFormat( " ", (b ? "*" : "-") );
46 }
47
48 return s.ToString();
49 }
50
51 public int CurrentPosition
52 {
53 get { return currentPosition; }
54 }
55
56 private int currentPosition;
57 private int numberOfPositions;
58 private bool [] columns;
59 }
60}
程序运行的时候,当皇后个数增加的时候,运行的时间也会急剧增加!下面这副图表示了皇后个数与运行时间的大致关系:
用PASCAL 解决八皇后问题
program JamesBend;
var
x:array[1..8]of integer;
c,i,d,z:integer;
function panduan( a,b:integer):boolean;
var
i:integer;
begin
panduan:=true;
for i:=a to b-1 do
if (x=x) or (abs(i-b)=abs(x-x)) then
panduan:=false;
end;
begin
z:=0;
for i:=1 to 8 do
x:=1;
c:=2;
x[1]:=1;
while c<9 do
begin
if x[c]<=8 then
if panduan(1,c) then c:=c+1
else
if x[c]<8 then x[c]:=x[c]+1
else
begin
if (c=2) and (x[1]=8) then break;
x[c]:=1;
c:=c-1;
x[c]:=x[c]+1;
end
else
begin
x[c]:=1;
c:=c-1;
x[c]:=x[c]+1;
end;
if c=9 then begin
z:=z+1;
for i:=1 to 8 do
write(x);
writeln;
x[c-1]:=1;
c:=c-2;
x[c]:=x[c]+1;
end;
end;
writeln(z);
end.
program eight;
var a:array [1..8] of integer;
b,c,d:array [-7..16] of integer;
t,i,j,k:integer;
procedure print;
begin
t:=t+1;
write(t,' ');
for k:=1 to 8 do write(a[k],' ');
writeln;
end;
procedure try(i:integer);
var j:integer;
begin
for j:=1 to 8 do {每个皇后都有8种可能位置}
if (b[j]=0) and (c=0) and (d=0) then {判断位置是否冲突}
begin
a:=j; {摆放皇后}
b[j]:=1; {宣布占领第J行}
c:=1; {占领两个对角线}
d:=1;
if i<8 then try(i+1) {8个皇后没有摆完,递归摆放下一皇后}
else print; {完成任务,打印结果}
b[j]:=0; {回溯}
c:=0;
d:=0;
end;
end;
begin
for k:=-7 to 16 do {数据初始化}
begin
b[k]:=0;
c[k]:=0;
d[k]:=0;
end;
try(1);{从第1个皇后开始放置}
end.
program eightqueen;
var
x:array[1..8] of integer;
y:array[1..8,1..8]of boolean;
a,b,c:array[-7..16] of boolean;
i,count:integer;
procedure print;{输出棋盘}
var
k,j:integer;
begin
for k:=1 to 8 do begin
for j:=1 to 8 do
y[k,j]:=false; end;
for k:=1 to 8 do
y[k,x[k]]:=true;
for k:=1 to 8 do begin
for j:=1 to 8 do
if y[k,j] then write('Q ')
else write('_ ');
writeln end;
end;
procedure try(i:integer);
var
j:integer;
begin
for j:=1 to 8 do
if a[j] and b and c
then
begin
x:=j;
a[j]:=false;
b:=false;
c:=false;
if i<8 then try(i+1){试下一个皇后位置}
else begin print; inc(count); writeln; end;
a[j]:=true;{还原}
b:=true;
c:=true;
end;
end;
begin
for i:=-7 to 16 do
begin
a:=true;
b:=true;
c:=true;
end; count:=0;
try(1); writeln(count);
end.
C++实现
这里介绍一个编程复杂度小,思路清晰的代码
#include<iostream>
using namespace std;
int width=8,lim=(1<<width)-1,ans=0;
void queen(int col,int ld,int rd) //分别是列,正斜线,反斜线,
{//col的二进制位中的1代表该行不能放的地方,ld,rd同理
if(col==lim){ans++;return;} //递归终止条件:col的二进制位在width(棋盘宽度)内都是1(放满了)
int pos=lim&~(col|ld|rd); //col,ld,rd都是0的位可以放皇后,pos该位置1
while(pos)
{
int t=pos&-pos; //取pos最右边的1位放皇后
pos-=t;
queen(col|t,(ld|t)<<1,(rd|t)>>1); //往棋盘的下一行递归,左斜线的限制往左,右斜线往右,可以画图看看
}
}
int main()
{
queen(0,0,0); //
cout<<ans<<endl;
return 0;
}