Hendrik Antoon Lorentz
一、生平简介
洛伦兹,H.A.(Hendrik Antoon Lorentz,1853~1928),荷兰物理学家,1853年7月18日生于阿纳姆,并在该地上小学和中学,成绩优异,少年时就对物理学感兴趣,同时还广泛地阅读历史和小说,并且熟练地掌握多门外语。他虽然生长在基督教的环境里,但却是一个自由思想家。
1870年洛伦兹考入莱顿大学,学习数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,这个职位最早是为J.D.范瓦耳斯设的,其学术地位很高,而这时洛伦兹年仅23岁。在莱顿大学任教35年,他对物理学的贡献都是在这期间作出的。
1912年洛伦兹辞去莱顿大学教授职务,到哈勒姆担任一个博物馆的顾问,同时兼任莱顿大学的名誉教授,每星期一早晨到莱顿大学就物理学当前的一些问题作演讲。后来他还在荷兰政府中任职,1919~1926年在教育部门工作,其间1921年起担任高等教育部部长。
1911~1927年担任索尔维物理学会议的固定主席。在国际物理学界的各种集会上,他经常是一位很受欢迎的主持人。1923年国际科学协作联盟委员会主席。他还是世界上许多科学院的外国院士和科学学会的外国会员。
洛伦兹于1928年2月4日在荷兰的哈勃姆去世,终年75岁。为了悼念这位荷兰近代文化的巨人,举行葬礼的那天,荷兰全国的电信、电话中止三分钟。世界各地科学界的著名人物参加了葬礼。爱因斯坦在洛伦兹墓前致词说:洛伦兹的成就“对我产生了最伟大的影响”,他是“我们时代最伟大、最高尚的人”。
二、科学成就
1.创立电子论
认为一切物质分子都含有电子,阴极射线的粒子就是电子。把以太与物质的相互作用归结为以太与电子的相互作用。这一理论成功地解释了塞曼效应,并因此获1902年诺贝尔物理学奖。
2.提出洛伦兹变换公式
1892年他研究过地球穿过静止以太所产生的效应,为了说明迈克孙-莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为。1899年,他在发表的论文里,计论了惯性系之间坐标和时间的变换问题,并得出电子与速度有关的结论。1904年,他发表了著名的变换公式(J.-H.庞加莱首先称之为洛伦兹变换)和质量与速度的关系式,并指出光速是物体相对于以太运动速度的极限。
3.出色的物理教育家
洛伦兹还是一位教育家,他在莱顿大学从事普通物理和理论物理教学多年,写过微积分和普通物理等教科书。在哈勒姆他曾致力于通俗物理讲演。他一生中花了很大一部分时间和精力审查别人的理论并给予帮助。他为人热诚、谦虚,受到A.爱因斯坦、E.薛定谔和其他青年一代理论物理学家们的尊敬,他们多次到莱顿大学向他请教,爱因斯坦曾说过,他一生中受洛伦兹的影响最大。
趣闻轶事
在物理学家中,洛伦兹是最富有国际性的。在他事业的最初20年中,他的国际性工作仅限于著作。后来,他开始离开莱顿书房和教室,广泛地与国外科学家进行个人接触。他的电子理论使他在物理学界获得领导地位。1898年,洛伦兹接受玻尔兹曼的邀请,为德国的自然科学与医学学会的迪塞尔多夫会议物理组做演讲。1900年在巴黎,为国际物理代表会(世界性物理学家集会)做演讲。洛伦兹在物理方面最重要的国际性活动是担任物理学的索尔维会议的定期主席(1911—1927年),他在临终前还主持了最后一次会议。洛伦兹在这些国际性的集会中主持会议并成为公认的领袖。大家对他渊博的学问、高明的技术、善于总结最复杂的争论以及无比精炼的语方都非常佩服。第一次大战后,洛伦兹的国际主义活动带有若干政治色彩。1909年至1921年,他担任荷兰皇家科学与文学研究院物理组的主任时,以自己的影响来说服人们参加战后盟国创立的国际性科学组织。1923年,他成为国联文化协作国际委员会的七个委员之一,并继承伯格森(H.Bergson)担任主席。
洛伦兹在物理学上最重要的贡献是他的电子论。早在他作学位论文之前,由于读过菲涅耳文集而深受其影响;后来受到H.von亥姆霍兹的启发,他用J.C.麦克斯韦的电磁理论来处理光在电介质交界面上的反射和折射问题作为他的博士论文,在论文的末尾,他提到把光磁理论与物质的分子理论结合起来的前景,这就是他后来创立电子论的根源。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即洛伦兹-洛伦茨公式)1892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚球,电子对于以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。这在个基础上,1895年他提出了著名的洛伦兹力公式。1896年,P.塞曼发现放在磁场中的光源,其光谱线发生分裂(塞曼效应)。洛伦兹立即用他的电子论对这一现象作了定量的解释。由于这一贡献,他和塞曼共同获得1902年的诺贝尔物理学奖。
洛伦兹变换Lorentz transformation
狭义相对论中关于不同惯性系之间物理事件时空坐标变换的基本关系式。设两个惯性系为S系和S′系,它们相应的笛卡尔坐标轴彼此平行,S′系相对于S系沿x方向运动,速度为v,且当t=t′=0时,S′系与S系的坐标原点重合,则事件在这两个惯性系的时空坐标之间的洛伦兹变换为x′=γ(x-vt),y′=y,z′=z,t′=γ(t-vx/c2),式中γ=(1-v2/c2)-1/2;c为真空中的光速 。不同惯性系中的物理定律必须在洛伦兹变换下保持形式不变。
在相对论以前,H.A.洛伦兹从存在绝对静止以太的观念出发,考虑物体运动发生收缩的物质过程得出洛伦兹变换。在洛伦兹理论中,变换所引入的量仅仅看作是数学上的辅助手段,并不包含相对论的时空观。爱因斯坦与洛伦兹不同,以观察到的事实为依据,立足于两条基本原理:相对性原理和光速不变原理,着眼于修改运动、时间、空间等基本概念,重新导出洛伦兹变换,并赋予洛伦兹变换崭新的物理内容。在狭义相对论中,洛伦兹变换是最基本的关系式,狭义相对论的运动学结论和时空性质,如同时性的相对性、长度收缩、时间延缓、速度变换公式、相对论多普勒效应等都可以从洛伦兹变换中直接得出