互质

王朝百科·作者佚名  2010-01-21  
宽屏版  字体: |||超大  

数学术语互质(relatively primeì)又叫互素。若N个整数的最大公因子是1,则称这N个整数互质。

例如8,10的最大公因子是2,不是1,因此不是整数互质。

7,10,13的最大公因子是1,因此这是整数互质。

5和5不互质,因为5和5的公因数有1、5。

1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。1只有一个因数(所以1既不是质数(素数),也不是合数),无法再找到1和其他数的别的公因数了,所以1和任何数都互质(除0外)。

互质数的写法:如c与m互质,则写作(c,m)=1。

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”

这里所说的“两个数”是指自然数。

“公约数只有 1”,不能误说成“没有公约数。”

判别方法:

(1)两个不同的质数一定是互质数。

例如,2与7、13与19。

(2)一个质数如果不能整除另一个合数,这两个数为互质数。

例如,3与10、5与 26。

(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。

(4)相邻的两个自然数是互质数。如 15与 16。

(5)相邻的两个奇数是互质数。如 49与 51。

(6)大数是质数的两个数是互质数。如97与88。

(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。

(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。

如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(9)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。

85-78=7,7不是78的约数,这两个数是互质数。

(10)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221

462÷221=2……20,

20=2×2×5。

2、5都不是221的约数,这两个数是互质数。

(11)减除法。如255与182。

255-182=73,观察知 73182。

182-(73×2)=36,显然 3673。

73-(36×2)=1,

(255,182)=1。

所以这两个数是互质数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝百科 版权所有